From iris.proofmode Require Import tactics intro_patterns. Set Default Proof Using "Type". Section tests. Context {PROP : sbi}. Implicit Types P Q R : PROP. Check "demo_0". Lemma demo_0 P Q : □ (P ∨ Q) -∗ (∀ x, ⌜x = 0⌝ ∨ ⌜x = 1⌝) → (Q ∨ P). Proof. iIntros "H #H2". Show. iDestruct "H" as "###H". (* should remove the disjunction "H" *) iDestruct "H" as "[#?|#?]"; last by iLeft. Show. (* should keep the disjunction "H" because it is instantiated *) iDestruct ("H2" \$! 10) as "[%|%]". done. done. Qed. Lemma demo_2 P1 P2 P3 P4 Q (P5 : nat → PROP) `{!Affine P4, !Absorbing P2} : P2 ∗ (P3 ∗ Q) ∗ True ∗ P1 ∗ P2 ∗ (P4 ∗ (∃ x:nat, P5 x ∨ P3)) ∗ emp -∗ P1 -∗ (True ∗ True) -∗ (((P2 ∧ False ∨ P2 ∧ ⌜0 = 0⌝) ∗ P3) ∗ Q ∗ P1 ∗ True) ∧ (P2 ∨ False) ∧ (False → P5 0). Proof. (* Intro-patterns do something :) *) iIntros "[H2 ([H3 HQ]&?&H1&H2'&foo&_)] ? [??]". (* To test destruct: can also be part of the intro-pattern *) iDestruct "foo" as "[_ meh]". repeat iSplit; [|by iLeft|iIntros "#[]"]. iFrame "H2". (* split takes a list of hypotheses just for the LHS *) iSplitL "H3". - iFrame "H3". iRight. auto. - iSplitL "HQ". iAssumption. by iSplitL "H1". Qed. Lemma demo_3 P1 P2 P3 : P1 ∗ P2 ∗ P3 -∗ P1 ∗ ▷ (P2 ∗ ∃ x, (P3 ∧ ⌜x = 0⌝) ∨ P3). Proof. iIntros "(\$ & \$ & \$)". iNext. by iExists 0. Qed. Definition foo (P : PROP) := (P -∗ P)%I. Definition bar : PROP := (∀ P, foo P)%I. Lemma test_unfold_constants : bar. Proof. iIntros (P) "HP //". Qed. Lemma test_iRewrite {A : ofeT} (x y : A) P : □ (∀ z, P -∗ (z ≡ y)) -∗ (P -∗ P ∧ (x,x) ≡ (y,x)). Proof. iIntros "#H1 H2". iRewrite (bi.internal_eq_sym x x with "[# //]"). iRewrite -("H1" \$! _ with "[- //]"). auto. Qed. Check "test_iDestruct_and_emp". Lemma test_iDestruct_and_emp P Q `{!Persistent P, !Persistent Q} : P ∧ emp -∗ emp ∧ Q -∗ (P ∗ Q). Proof. iIntros "[#? _] [_ #?]". Show. auto. Qed. Lemma test_iIntros_persistent P Q `{!Persistent Q} : (P → Q → P ∧ Q)%I. Proof. iIntros "H1 #H2". by iFrame "∗#". Qed. Lemma test_iDestruct_intuitionistic_1 P Q `{!Persistent P}: Q ∗ □ (Q -∗ P) -∗ P ∗ Q. Proof. iIntros "[HQ #HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed. Lemma test_iDestruct_intuitionistic_2 P Q `{!Persistent P, !Affine P}: Q ∗ (Q -∗ P) -∗ P. Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". done. Qed. Lemma test_iDestruct_intuitionistic_affine_bi `{BiAffine PROP} P Q `{!Persistent P}: Q ∗ (Q -∗ P) -∗ P ∗ Q. Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed. Lemma test_iIntros_pure (ψ φ : Prop) P : ψ → (⌜ φ ⌝ → P → ⌜ φ ∧ ψ ⌝ ∧ P)%I. Proof. iIntros (??) "H". auto. Qed. Lemma test_iIntros_pure_not : (⌜ ¬False ⌝ : PROP)%I. Proof. by iIntros (?). Qed. Lemma test_fast_iIntros P Q : (∀ x y z : nat, ⌜x = plus 0 x⌝ → ⌜y = 0⌝ → ⌜z = 0⌝ → P → □ Q → foo (x ≡ x))%I. Proof. iIntros (a) "*". iIntros "#Hfoo **". iIntros "_ //". Qed. Lemma test_very_fast_iIntros P : ∀ x y : nat, (⌜ x = y ⌝ → P -∗ P)%I. Proof. by iIntros. Qed. (** Prior to 0b84351c this used to loop, now `iAssumption` instantiates `R` with `False` and performs false elimination. *) Lemma test_iAssumption_evar_ex_false : ∃ R, R ⊢ ∀ P, P. Proof. eexists. iIntros "?" (P). iAssumption. Qed. Lemma test_iAssumption_affine P Q R `{!Affine P, !Affine R} : P -∗ Q -∗ R -∗ Q. Proof. iIntros "H1 H2 H3". iAssumption. Qed. Lemma test_done_goal_evar Q : ∃ P, Q ⊢ P. Proof. eexists. iIntros "H". Fail done. iAssumption. Qed. Lemma test_iDestruct_spatial_and P Q1 Q2 : P ∗ (Q1 ∧ Q2) -∗ P ∗ Q1. Proof. iIntros "[H [? _]]". by iFrame. Qed. Lemma test_iAssert_persistent P Q : P -∗ Q -∗ True. Proof. iIntros "HP HQ". iAssert True%I as "#_". { by iClear "HP HQ". } iAssert True%I with "[HP]" as "#_". { Fail iClear "HQ". by iClear "HP". } iAssert True%I as %_. { by iClear "HP HQ". } iAssert True%I with "[HP]" as %_. { Fail iClear "HQ". by iClear "HP". } done. Qed. Lemma test_iAssert_persistently P : □ P -∗ True. Proof. iIntros "HP". iAssert (□ P)%I with "[# //]" as "#H". done. Qed. Lemma test_iSpecialize_auto_frame P Q R : (P -∗ True -∗ True -∗ Q -∗ R) -∗ P -∗ Q -∗ R. Proof. iIntros "H ? HQ". by iApply ("H" with "[\$]"). Qed. Lemma test_iSpecialize_pure (φ : Prop) Q R: φ → (⌜φ⌝ -∗ Q) → Q. Proof. iIntros (HP HPQ). iDestruct (HPQ \$! HP) as "?". done. Qed. Lemma test_iSpecialize_Coq_entailment P Q R : P → (P -∗ Q) → Q. Proof. iIntros (HP HPQ). iDestruct (HPQ \$! HP) as "?". done. Qed. Lemma test_iEmp_intro P Q R `{!Affine P, !Persistent Q, !Affine R} : P -∗ Q → R -∗ emp. Proof. iIntros "HP #HQ HR". iEmpIntro. Qed. Lemma test_fresh P Q: (P ∗ Q) -∗ (P ∗ Q). Proof. iIntros "H". let H1 := iFresh in let H2 := iFresh in let pat :=constr:(IList [cons (IIdent H1) (cons (IIdent H2) nil)]) in iDestruct "H" as pat. iFrame. Qed. (* Check coercions *) Lemma test_iExist_coercion (P : Z → PROP) : (∀ x, P x) -∗ ∃ x, P x. Proof. iIntros "HP". iExists (0:nat). iApply ("HP" \$! (0:nat)). Qed. Lemma test_iExist_tc `{Collection A C} P : (∃ x1 x2 : gset positive, P -∗ P)%I. Proof. iExists {[ 1%positive ]}, ∅. auto. Qed. Lemma test_iSpecialize_tc P : (∀ x y z : gset positive, P) -∗ P. Proof. iIntros "H". (* FIXME: this [unshelve] and [apply _] should not be needed. *) unshelve iSpecialize ("H" \$! ∅ {[ 1%positive ]} ∅); try apply _. done. Qed. Lemma test_iFrame_pure {A : ofeT} (φ : Prop) (y z : A) : φ → ⌜y ≡ z⌝ -∗ (⌜ φ ⌝ ∧ ⌜ φ ⌝ ∧ y ≡ z : PROP). Proof. iIntros (Hv) "#Hxy". iFrame (Hv) "Hxy". Qed. Lemma test_iFrame_disjunction_1 P1 P2 Q1 Q2 : BiAffine PROP → □ P1 -∗ Q2 -∗ P2 -∗ (P1 ∗ P2 ∗ False ∨ P2) ∗ (Q1 ∨ Q2). Proof. intros ?. iIntros "#HP1 HQ2 HP2". iFrame "HP1 HQ2 HP2". Qed. Lemma test_iFrame_disjunction_2 P : P -∗ (True ∨ True) ∗ P. Proof. iIntros "HP". iFrame "HP". auto. Qed. Lemma test_iFrame_conjunction_1 P Q : P -∗ Q -∗ (P ∗ Q) ∧ (P ∗ Q). Proof. iIntros "HP HQ". iFrame "HP HQ". Qed. Lemma test_iFrame_conjunction_2 P Q : P -∗ Q -∗ (P ∧ P) ∗ (Q ∧ Q). Proof. iIntros "HP HQ". iFrame "HP HQ". Qed. Lemma test_iFrame_later `{BiAffine PROP} P Q : P -∗ Q -∗ ▷ P ∗ Q. Proof. iIntros "H1 H2". by iFrame "H1". Qed. Lemma test_iAssert_modality P : ◇ False -∗ ▷ P. Proof. iIntros "HF". iAssert ( False)%I with "[> -]" as %[]. by iMod "HF". Qed. Lemma test_iMod_affinely_timeless P `{!Timeless P} : ▷ P -∗ ◇ P. Proof. iIntros "H". iMod "H". done. Qed. Lemma test_iAssumption_False P : False -∗ P. Proof. iIntros "H". done. Qed. (* Check instantiation and dependent types *) Lemma test_iSpecialize_dependent_type (P : ∀ n, vec nat n → PROP) : (∀ n v, P n v) -∗ ∃ n v, P n v. Proof. iIntros "H". iExists _, [#10]. iSpecialize ("H" \$! _ [#10]). done. Qed. (* Check that typeclasses are not resolved too early *) Lemma test_TC_resolution `{!BiAffine PROP} (Φ : nat → PROP) l x : x ∈ l → ([∗ list] y ∈ l, Φ y) -∗ Φ x. Proof. iIntros (Hp) "HT". iDestruct (big_sepL_elem_of _ _ _ Hp with "HT") as "Hp". done. Qed. Lemma test_eauto_iFrame P Q R `{!Persistent R} : P -∗ Q -∗ R → R ∗ Q ∗ P ∗ R ∨ False. Proof. eauto 10 with iFrame. Qed. Lemma test_iCombine_persistent P Q R `{!Persistent R} : P -∗ Q -∗ R → R ∗ Q ∗ P ∗ R ∨ False. Proof. iIntros "HP HQ #HR". iCombine "HR HQ HP HR" as "H". auto. Qed. Lemma test_iCombine_frame P Q R `{!Persistent R} : P -∗ Q -∗ R → R ∗ Q ∗ P ∗ R. Proof. iIntros "HP HQ #HR". iCombine "HQ HP HR" as "\$". by iFrame. Qed. Lemma test_iNext_evar P : P -∗ True. Proof. iIntros "HP". iAssert (▷ _ -∗ ▷ P)%I as "?"; last done. iIntros "?". iNext. iAssumption. Qed. Lemma test_iNext_sep1 P Q (R1 := (P ∗ Q)%I) : (▷ P ∗ ▷ Q) ∗ R1 -∗ ▷ ((P ∗ Q) ∗ R1). Proof. iIntros "H". iNext. rewrite {1 2}(lock R1). (* check whether R1 has not been unfolded *) done. Qed. Lemma test_iNext_sep2 P Q : ▷ P ∗ ▷ Q -∗ ▷ (P ∗ Q). Proof. iIntros "H". iNext. iExact "H". (* Check that the laters are all gone. *) Qed. Lemma test_iNext_quantifier {A} (Φ : A → A → PROP) : (∀ y, ∃ x, ▷ Φ x y) -∗ ▷ (∀ y, ∃ x, Φ x y). Proof. iIntros "H". iNext. done. Qed. Lemma test_iFrame_persistent (P Q : PROP) : □ P -∗ Q -∗ (P ∗ P) ∗ (P ∗ Q ∨ Q). Proof. iIntros "#HP". iFrame "HP". iIntros "\$". Qed. Lemma test_iSplit_persistently P Q : □ P -∗ (P ∗ P). Proof. iIntros "#?". by iSplit. Qed. Lemma test_iSpecialize_persistent P Q : □ P -∗ ( P → Q) -∗ Q. Proof. iIntros "#HP HPQ". by iSpecialize ("HPQ" with "HP"). Qed. Lemma test_iDestruct_persistent P (Φ : nat → PROP) `{!∀ x, Persistent (Φ x)}: □ (P -∗ ∃ x, Φ x) -∗ P -∗ ∃ x, Φ x ∗ P. Proof. iIntros "#H HP". iDestruct ("H" with "HP") as (x) "#H2". eauto with iFrame. Qed. Lemma test_iLöb P : (∃ n, ▷^n P)%I. Proof. iLöb as "IH". iDestruct "IH" as (n) "IH". by iExists (S n). Qed. Lemma test_iInduction_wf (x : nat) P Q : □ P -∗ Q -∗ ⌜ (x + 0 = x)%nat ⌝. Proof. iIntros "#HP HQ". iInduction (lt_wf x) as [[|x] _] "IH"; simpl; first done. rewrite (inj_iff S). by iApply ("IH" with "[%]"); first omega. Qed. Lemma test_iInduction_using (m : gmap nat nat) (Φ : nat → nat → PROP) y : ([∗ map] x ↦ i ∈ m, Φ y x) -∗ ([∗ map] x ↦ i ∈ m, emp ∗ Φ y x). Proof. iIntros "Hm". iInduction m as [|i x m] "IH" using map_ind forall(y). - by rewrite !big_sepM_empty. - rewrite !big_sepM_insert //. iDestruct "Hm" as "[\$ ?]". by iApply "IH". Qed. Lemma test_iIntros_start_proof : (True : PROP)%I. Proof. (* Make sure iIntros actually makes progress and enters the proofmode. *) progress iIntros. done. Qed. Lemma test_True_intros : (True : PROP) -∗ True. Proof. iIntros "?". done. Qed. Lemma test_iPoseProof_let P Q : (let R := True%I in R ∗ P ⊢ Q) → P ⊢ Q. Proof. iIntros (help) "HP". iPoseProof (help with "[\$HP]") as "?". done. Qed. Lemma test_iIntros_let P : ∀ Q, let R := emp%I in P -∗ R -∗ Q -∗ P ∗ Q. Proof. iIntros (Q R) "\$ _ \$". Qed. Lemma test_iNext_iRewrite P Q : ▷ (Q ≡ P) -∗ ▷ Q -∗ ▷ P. Proof. iIntros "#HPQ HQ !#". iNext. by iRewrite "HPQ" in "HQ". Qed. Lemma test_iIntros_modalities `(!Absorbing P) : ( (▷ ∀ x : nat, ⌜ x = 0 ⌝ → ⌜ x = 0 ⌝ -∗ False -∗ P -∗ P))%I. Proof. iIntros (x ??). iIntros "* **". (* Test that fast intros do not work under modalities *) iIntros ([]). Qed. Lemma test_iIntros_rewrite P (x1 x2 x3 x4 : nat) : x1 = x2 → (⌜ x2 = x3 ⌝ ∗ ⌜ x3 ≡ x4 ⌝ ∗ P) -∗ ⌜ x1 = x4 ⌝ ∗ P. Proof. iIntros (?) "(-> & -> & \$)"; auto. Qed. Lemma test_iNext_affine P Q : ▷ (Q ≡ P) -∗ ▷ Q -∗ ▷ P. Proof. iIntros "#HPQ HQ !#". iNext. by iRewrite "HPQ" in "HQ". Qed. Lemma test_iAlways P Q R : □ P -∗ Q → R -∗ P ∗ □ Q. Proof. iIntros "#HP #HQ HR". iSplitL. iAlways. done. iAlways. done. Qed. (* A bunch of test cases from #127 to establish that tactics behave the same on `⌜ φ ⌝ → P` and `∀ _ : φ, P` *) Lemma test_forall_nondep_1 (φ : Prop) : φ → (∀ _ : φ, False : PROP) -∗ False. Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed. Lemma test_forall_nondep_2 (φ : Prop) : φ → (∀ _ : φ, False : PROP) -∗ False. Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed. Lemma test_forall_nondep_3 (φ : Prop) : φ → (∀ _ : φ, False : PROP) -∗ False. Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" \$! _). done. done. Qed. Lemma test_forall_nondep_4 (φ : Prop) : φ → (∀ _ : φ, False : PROP) -∗ False. Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" \$! Hφ); done. Qed. Lemma test_pure_impl_1 (φ : Prop) : φ → (⌜φ⌝ → False : PROP) -∗ False. Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed. Lemma test_pure_impl_2 (φ : Prop) : φ → (⌜φ⌝ → False : PROP) -∗ False. Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed. Lemma test_pure_impl_3 (φ : Prop) : φ → (⌜φ⌝ → False : PROP) -∗ False. Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" \$! _). done. done. Qed. Lemma test_pure_impl_4 (φ : Prop) : φ → (⌜φ⌝ → False : PROP) -∗ False. Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" \$! Hφ). done. Qed. Lemma test_forall_nondep_impl2 (φ : Prop) P : φ → P -∗ (∀ _ : φ, P -∗ False : PROP) -∗ False. Proof. iIntros (Hφ) "HP Hφ". Fail iSpecialize ("Hφ" with "HP"). iSpecialize ("Hφ" with "[% //] HP"). done. Qed. Lemma test_pure_impl2 (φ : Prop) P : φ → P -∗ (⌜φ⌝ → P -∗ False : PROP) -∗ False. Proof. iIntros (Hφ) "HP Hφ". Fail iSpecialize ("Hφ" with "HP"). iSpecialize ("Hφ" with "[% //] HP"). done. Qed. Lemma test_iNext_laterN_later P n : ▷ ▷^n P -∗ ▷^n ▷ P. Proof. iIntros "H". iNext. by iNext. Qed. Lemma test_iNext_later_laterN P n : ▷^n ▷ P -∗ ▷ ▷^n P. Proof. iIntros "H". iNext. by iNext. Qed. Lemma test_iNext_plus_1 P n1 n2 : ▷ ▷^n1 ▷^n2 P -∗ ▷^n1 ▷^n2 ▷ P. Proof. iIntros "H". iNext. iNext. by iNext. Qed. Lemma test_iNext_plus_2 P n m : ▷^n ▷^m P -∗ ▷^(n+m) P. Proof. iIntros "H". iNext. done. Qed. Check "test_iNext_plus_3". Lemma test_iNext_plus_3 P Q n m k : ▷^m ▷^(2 + S n + k) P -∗ ▷^m ▷ ▷^(2 + S n) Q -∗ ▷^k ▷ ▷^(S (S n + S m)) (P ∗ Q). Proof. iIntros "H1 H2". iNext. iNext. iNext. iFrame. Show. iModIntro. done. Qed. Lemma test_iNext_unfold P Q n m (R := (▷^n P)%I) : R ⊢ ▷^m True. Proof. iIntros "HR". iNext. match goal with |- context [ R ] => idtac | |- _ => fail end. done. Qed. Lemma test_iNext_fail P Q a b c d e f g h i j: ▷^(a + b) ▷^(c + d + e) P -∗ ▷^(f + g + h + i + j) True. Proof. iIntros "H". iNext. done. Qed. Lemma test_specialize_affine_pure (φ : Prop) P : φ → ( ⌜φ⌝ -∗ P) ⊢ P. Proof. iIntros (Hφ) "H". by iSpecialize ("H" with "[% //]"). Qed. Lemma test_assert_affine_pure (φ : Prop) P : φ → P ⊢ P ∗ ⌜φ⌝. Proof. iIntros (Hφ). iAssert ( ⌜φ⌝)%I with "[%]" as "\$"; auto. Qed. Lemma test_assert_pure (φ : Prop) P : φ → P ⊢ P ∗ ⌜φ⌝. Proof. iIntros (Hφ). iAssert ⌜φ⌝%I with "[%]" as "\$"; auto with iFrame. Qed. Lemma test_specialize_very_nested (φ : Prop) P P2 Q R1 R2 : φ → P -∗ P2 -∗ ( ⌜ φ ⌝ -∗ P2 -∗ Q) -∗ (P -∗ Q -∗ R1) -∗ (R1 -∗ True -∗ R2) -∗ R2. Proof. iIntros (?) "HP HP2 HQ H1 H2". by iApply ("H2" with "(H1 HP (HQ [% //] [-])) [//]"). Qed. Lemma test_specialize_very_very_nested P1 P2 P3 P4 P5 : □ P1 -∗ □ (P1 -∗ P2) -∗ (P2 -∗ P2 -∗ P3) -∗ (P3 -∗ P4) -∗ (P4 -∗ P5) -∗ P5. Proof. iIntros "#H #H1 H2 H3 H4". by iSpecialize ("H4" with "(H3 (H2 (H1 H) (H1 H)))"). Qed. Check "test_specialize_nested_intuitionistic". Lemma test_specialize_nested_intuitionistic (φ : Prop) P P2 Q R1 R2 : φ → □ P -∗ □ (P -∗ Q) -∗ (Q -∗ Q -∗ R2) -∗ R2. Proof. iIntros (?) "#HP #HQ HR". iSpecialize ("HR" with "(HQ HP) (HQ HP)"). Show. done. Qed. Lemma test_specialize_intuitionistic P Q : □ P -∗ □ (P -∗ Q) -∗ □ Q. Proof. iIntros "#HP #HQ". iSpecialize ("HQ" with "HP"). done. Qed. Lemma test_iEval x y : ⌜ (y + x)%nat = 1 ⌝ -∗ ⌜ S (x + y) = 2%nat ⌝ : PROP. Proof. iIntros (H). iEval (rewrite (Nat.add_comm x y) // H). done. Qed. Check "test_iSimpl_in". Lemma test_iSimpl_in x y : ⌜ (3 + x)%nat = y ⌝ -∗ ⌜ S (S (S x)) = y ⌝ : PROP. Proof. iIntros "H". iSimpl in "H". Show. done. Qed. Lemma test_iIntros_pure_neg : (⌜ ¬False ⌝ : PROP)%I. Proof. by iIntros (?). Qed. Lemma test_iPureIntro_absorbing (φ : Prop) : φ → sbi_emp_valid (PROP:=PROP) ( ⌜φ⌝)%I. Proof. intros ?. iPureIntro. done. Qed. Check "test_iFrame_later_1". Lemma test_iFrame_later_1 P Q : P ∗ ▷ Q -∗ ▷ (P ∗ ▷ Q). Proof. iIntros "H". iFrame "H". Show. auto. Qed. Check "test_iFrame_later_2". Lemma test_iFrame_later_2 P Q : ▷ P ∗ ▷ Q -∗ ▷ (▷ P ∗ ▷ Q). Proof. iIntros "H". iFrame "H". Show. auto. Qed. Lemma test_with_ident P Q R : P -∗ Q -∗ (P -∗ Q -∗ R) -∗ R. Proof. iIntros "? HQ H". iMatchHyp (fun H _ => iApply ("H" with [spec_patterns.SIdent H []; spec_patterns.SIdent "HQ" []])). Qed. Lemma iFrame_with_evar_r P Q : ∃ R, (P -∗ Q -∗ P ∗ R) ∧ R = Q. Proof. eexists. split. iIntros "HP HQ". iFrame. iApply "HQ". done. Qed. Lemma iFrame_with_evar_l P Q : ∃ R, (P -∗ Q -∗ R ∗ P) ∧ R = Q. Proof. eexists. split. iIntros "HP HQ". Fail iFrame "HQ". iSplitR "HP"; iAssumption. done. Qed. Lemma iFrame_with_evar_persistent P Q : ∃ R, (P -∗ □ Q -∗ P ∗ R ∗ Q) ∧ R = emp%I. Proof. eexists. split. iIntros "HP #HQ". iFrame "HQ HP". iEmpIntro. done. Qed. Lemma test_iAccu P Q R S : ∃ PP, (□P -∗ Q -∗ R -∗ S -∗ PP) ∧ PP = (Q ∗ R ∗ S)%I. Proof. eexists. split. iIntros "#? ? ? ?". iAccu. done. Qed. Lemma test_iAssumption_evar P : ∃ R, (R ⊢ P) ∧ R = P. Proof. eexists. split. - iIntros "H". iAssumption. (* Now verify that the evar was chosen as desired (i.e., it should not pick False). *) - reflexivity. Qed. Lemma test_iAssumption_False_no_loop : ∃ R, R ⊢ ∀ P, P. Proof. eexists. iIntros "?" (P). done. Qed. Lemma test_apply_affine_impl `{!BiPlainly PROP} (P : PROP) : P -∗ (∀ Q : PROP, ■ (Q -∗ Q) → ■ (P -∗ Q) → Q). Proof. iIntros "HP" (Q) "_ #HPQ". by iApply "HPQ". Qed. Lemma test_apply_affine_wand `{!BiPlainly PROP} (P : PROP) : P -∗ (∀ Q : PROP, ■ (Q -∗ Q) -∗ ■ (P -∗ Q) -∗ Q). Proof. iIntros "HP" (Q) "_ #HPQ". by iApply "HPQ". Qed. Lemma test_and_sep (P Q R : PROP) : P ∧ (Q ∗ □ R) ⊢ (P ∧ Q) ∗ □ R. Proof. iIntros "H". repeat iSplit. - iDestruct "H" as "[\$ _]". - iDestruct "H" as "[_ [\$ _]]". - iDestruct "H" as "[_ [_ #\$]]". Qed. Lemma test_and_sep_2 (P Q R : PROP) `{!Persistent R, !Affine R} : P ∧ (Q ∗ R) ⊢ (P ∧ Q) ∗ R. Proof. iIntros "H". repeat iSplit. - iDestruct "H" as "[\$ _]". - iDestruct "H" as "[_ [\$ _]]". - iDestruct "H" as "[_ [_ #\$]]". Qed. Check "test_and_sep_affine_bi". Lemma test_and_sep_affine_bi `{BiAffine PROP} P Q : □ P ∧ Q ⊢ □ P ∗ Q. Proof. iIntros "[??]". iSplit; last done. Show. done. Qed. Check "test_big_sepL_simpl". Lemma test_big_sepL_simpl x (l : list nat) P : P -∗ ([∗ list] k↦y ∈ l, ⌜ y = y ⌝) -∗ ([∗ list] y ∈ x :: l, ⌜ y = y ⌝) -∗ P. Proof. iIntros "HP ??". Show. simpl. Show. done. Qed. Check "test_big_sepL2_simpl". Lemma test_big_sepL2_simpl x1 x2 (l1 l2 : list nat) P : P -∗ ([∗ list] k↦y1;y2 ∈ []; l2, ⌜ y1 = y2 ⌝) -∗ ([∗ list] y1;y2 ∈ x1 :: l1; (x2 :: l2) ++ l2, ⌜ y1 = y2 ⌝) -∗ P ∨ ([∗ list] y1;y2 ∈ x1 :: l1; x2 :: l2, True). Proof. iIntros "HP ??". Show. simpl. Show. by iLeft. Qed. Check "test_big_sepL2_iDestruct". Lemma test_big_sepL2_iDestruct (Φ : nat → nat → PROP) x1 x2 (l1 l2 : list nat) : ([∗ list] y1;y2 ∈ x1 :: l1; x2 :: l2, Φ y1 y2) -∗ Φ x1 x2. Proof. iIntros "[??]". Show. iFrame. Qed. Lemma test_big_sepL2_iFrame (Φ : nat → nat → PROP) (l1 l2 : list nat) P : Φ 0 10 -∗ ([∗ list] y1;y2 ∈ l1;l2, Φ y1 y2) -∗ ([∗ list] y1;y2 ∈ (0 :: l1);(10 :: l2), Φ y1 y2). Proof. iIntros "\$ ?". iFrame. Qed. Lemma test_lemma_1 (b : bool) : emp ⊢@{PROP} □?b True. Proof. destruct b; simpl; eauto. Qed. Check "test_reducing_after_iDestruct". Lemma test_reducing_after_iDestruct : emp ⊢@{PROP} True. Proof. iIntros "H". iDestruct (test_lemma_1 true with "H") as "H". Show. done. Qed. Lemma test_lemma_2 (b : bool) : □?b emp ⊢@{PROP} emp. Proof. destruct b; simpl; eauto. Qed. Check "test_reducing_after_iApply". Lemma test_reducing_after_iApply : emp ⊢@{PROP} emp. Proof. iIntros "#H". iApply (test_lemma_2 true). Show. auto. Qed. Lemma test_lemma_3 (b : bool) : □?b emp ⊢@{PROP} ⌜b = b⌝. Proof. destruct b; simpl; eauto. Qed. Check "test_reducing_after_iApply_late_evar". Lemma test_reducing_after_iApply_late_evar : emp ⊢@{PROP} ⌜true = true⌝. Proof. iIntros "#H". iApply (test_lemma_3). Show. auto. Qed. Section wandM. Import proofmode.base. Check "test_wandM". Lemma test_wandM mP Q R : (mP -∗? Q) -∗ (Q -∗ R) -∗ (mP -∗? R). Proof. iIntros "HPQ HQR HP". Show. iApply "HQR". iApply "HPQ". Show. done. Qed. End wandM. Definition modal_if_def b (P : PROP) := (□?b P)%I. Lemma modal_if_lemma1 b P : False -∗ □?b P. Proof. iIntros "?". by iExFalso. Qed. Lemma test_iApply_prettification1 (P : PROP) : False -∗ modal_if_def true P. Proof. (* Make sure the goal is not prettified before [iApply] unifies. *) iIntros "?". rewrite /modal_if_def. iApply modal_if_lemma1. iAssumption. Qed. Lemma modal_if_lemma2 P : False -∗ □?false P. Proof. iIntros "?". by iExFalso. Qed. Lemma test_iApply_prettification2 (P : PROP) : False -∗ ∃ b, □?b P. Proof. (* Make sure the conclusion of the lemma is not prettified too early. *) iIntros "?". iExists _. iApply modal_if_lemma2. done. Qed. Lemma test_iDestruct_clear P Q R : P -∗ (Q ∗ R) -∗ True. Proof. iIntros "HP HQR". iDestruct "HQR" as "{HP} [HQ HR]". done. Qed. End tests. (** Test specifically if certain things print correctly. *) Section printing_tests. Context {PROP : sbi} `{!BiFUpd PROP}. Implicit Types P Q R : PROP. Check "elim_mod_accessor". Lemma elim_mod_accessor {X : Type} E1 E2 α (β : X → PROP) γ : accessor (fupd E1 E2) (fupd E2 E1) α β γ -∗ |={E1}=> True. Proof. iIntros ">Hacc". Show. Abort. (* Test line breaking of long assumptions. *) Section linebreaks. Check "print_long_line_1". Lemma print_long_line_1 (P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P : PROP) : P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P ∗ P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P -∗ True. Proof. iIntros "HP". Show. Undo. iIntros "?". Show. Abort. (* This is specifically crafted such that not having the printing box in the proofmode notation breaks the output. *) Local Notation "'TESTNOTATION' '{{' P '|' Q '}' '}'" := (P ∧ Q)%I (format "'TESTNOTATION' '{{' P '|' '/' Q '}' '}'") : bi_scope. Check "print_long_line_2". Lemma print_long_line_2 (P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P : PROP) : TESTNOTATION {{ P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P | P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P }} -∗ True. Proof. iIntros "HP". Show. Undo. iIntros "?". Show. Abort. Check "long_impl". Lemma long_impl (PPPPPPPPPPPPPPPPP QQQQQQQQQQQQQQQQQQ : PROP) : (PPPPPPPPPPPPPPPPP → (QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ))%I. Proof. iStartProof. Show. Abort. Check "long_impl_nested". Lemma long_impl_nested (PPPPPPPPPPPPPPPPP QQQQQQQQQQQQQQQQQQ : PROP) : (PPPPPPPPPPPPPPPPP → (QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ) → (QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ))%I. Proof. iStartProof. Show. Abort. Check "long_wand". Lemma long_wand (PPPPPPPPPPPPPPPPP QQQQQQQQQQQQQQQQQQ : PROP) : (PPPPPPPPPPPPPPPPP -∗ (QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ))%I. Proof. iStartProof. Show. Abort. Check "long_wand_nested". Lemma long_wand_nested (PPPPPPPPPPPPPPPPP QQQQQQQQQQQQQQQQQQ : PROP) : (PPPPPPPPPPPPPPPPP -∗ (QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ) -∗ (QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ))%I. Proof. iStartProof. Show. Abort. Check "long_fupd". Lemma long_fupd E (PPPPPPPPPPPPPPPPP QQQQQQQQQQQQQQQQQQ : PROP) : PPPPPPPPPPPPPPPPP ={E}=∗ QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ. Proof. iStartProof. Show. Abort. Check "long_fupd_nested". Lemma long_fupd_nested E1 E2 (PPPPPPPPPPPPPPPPP QQQQQQQQQQQQQQQQQQ : PROP) : PPPPPPPPPPPPPPPPP ={E1,E2}=∗ QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ ={E1,E2}=∗ QQQQQQQQQQQQQQQQQQ ∗ QQQQQQQQQQQQQQQQQQ. Proof. iStartProof. Show. Abort. End linebreaks. End printing_tests. (** Test error messages *) Section error_tests. Context {PROP : sbi}. Implicit Types P Q R : PROP. Check "iAlways_spatial_non_empty". Lemma iAlways_spatial_non_empty P : P -∗ □ emp. Proof. iIntros "HP". Fail iAlways. Abort. Check "iDestruct_bad_name". Lemma iDestruct_bad_name P : P -∗ P. Proof. iIntros "HP". Fail iDestruct "HQ" as "HP". Abort. Check "iIntros_dup_name". Lemma iIntros_dup_name P Q : P -∗ Q -∗ ∀ x y : (), P. Proof. iIntros "HP". Fail iIntros "HP". iIntros "HQ" (x). Fail iIntros (x). Abort. Check "iSplit_one_of_many". Lemma iSplit_one_of_many P : P -∗ P -∗ P ∗ P. Proof. iIntros "HP1 HP2". Fail iSplitL "HP1 HPx". Fail iSplitL "HPx HP1". Abort. Check "iExact_fail". Lemma iExact_fail P Q : P -∗ Q -∗ P. Proof. iIntros "HP". Fail iExact "HQ". iIntros "HQ". Fail iExact "HQ". Fail iExact "HP". Abort. Check "iClear_fail". Lemma iClear_fail P : P -∗ P. Proof. Fail iClear "HP". iIntros "HP". Fail iClear "HP". Abort. Check "iSpecializeArgs_fail". Lemma iSpecializeArgs_fail P : (∀ x : nat, P) -∗ P. Proof. iIntros "HP". Fail iSpecialize ("HP" \$! true). Abort. Check "iStartProof_fail". Lemma iStartProof_fail : 0 = 0. Proof. Fail iStartProof. Abort. Check "iPoseProof_fail". Lemma iPoseProof_fail P : P -∗ P. Proof. Fail iPoseProof (eq_refl 0) as "H". iIntros "H". Fail iPoseProof bi.and_intro as "H". Abort. Check "iRevert_fail". Lemma iRevert_fail P : P -∗ P. Proof. Fail iRevert "H". Abort. Check "iDestruct_fail". Lemma iDestruct_fail P : P -∗ P. Proof. iIntros "HP". Fail iDestruct "HP" as "{HP}". Fail iDestruct "HP" as "[{HP}]". Abort. Check "iApply_fail". Lemma iApply_fail P Q : P -∗ Q. Proof. iIntros "HP". Fail iApply "HP". Abort. Check "iApply_fail_not_affine_1". Lemma iApply_fail_not_affine_1 P Q : P -∗ Q -∗ Q. Proof. iIntros "HP HQ". Fail iApply "HQ". Abort. Check "iApply_fail_not_affine_2". Lemma iApply_fail_not_affine_1 P Q R : P -∗ R -∗ (R -∗ Q) -∗ Q. Proof. iIntros "HP HR HQ". Fail iApply ("HQ" with "HR"). Abort. End error_tests.