From iris.base_logic Require Export base_logic. Import uPred. Section classes. Context {M : ucmraT}. Implicit Types P Q : uPred M. Class FromAssumption (p : bool) (P Q : uPred M) := from_assumption : □?p P ⊢ Q. Global Arguments from_assumption _ _ _ {_}. Class IntoPure (P : uPred M) (φ : Prop) := into_pure : P ⊢ ⌜φ⌝. Global Arguments into_pure : clear implicits. Class FromPure (P : uPred M) (φ : Prop) := from_pure : ⌜φ⌝ ⊢ P. Global Arguments from_pure : clear implicits. Class IntoPersistentP (P Q : uPred M) := into_persistentP : P ⊢ □ Q. Global Arguments into_persistentP : clear implicits. Class IntoLaterN (n : nat) (P Q : uPred M) := into_laterN : P ⊢ ▷^n Q. Global Arguments into_laterN _ _ _ {_}. Class FromLaterN (n : nat) (P Q : uPred M) := from_laterN : ▷^n Q ⊢ P. Global Arguments from_laterN _ _ _ {_}. Class IntoWand (R P Q : uPred M) := into_wand : R ⊢ P -∗ Q. Global Arguments into_wand : clear implicits. Class FromAnd (P Q1 Q2 : uPred M) := from_and : Q1 ∧ Q2 ⊢ P. Global Arguments from_and : clear implicits. Class FromSep (P Q1 Q2 : uPred M) := from_sep : Q1 ∗ Q2 ⊢ P. Global Arguments from_sep : clear implicits. Class IntoAnd (p : bool) (P Q1 Q2 : uPred M) := into_and : P ⊢ if p then Q1 ∧ Q2 else Q1 ∗ Q2. Global Arguments into_and : clear implicits. Lemma mk_into_and_sep p P Q1 Q2 : (P ⊢ Q1 ∗ Q2) → IntoAnd p P Q1 Q2. Proof. rewrite /IntoAnd=>->. destruct p; auto using sep_and. Qed. Class FromOp {A : cmraT} (a b1 b2 : A) := from_op : b1 ⋅ b2 ≡ a. Global Arguments from_op {_} _ _ _ {_}. Class IntoOp {A : cmraT} (a b1 b2 : A) := into_op : a ≡ b1 ⋅ b2. Global Arguments into_op {_} _ _ _ {_}. Class Frame (R P Q : uPred M) := frame : R ∗ Q ⊢ P. Global Arguments frame : clear implicits. Class FromOr (P Q1 Q2 : uPred M) := from_or : Q1 ∨ Q2 ⊢ P. Global Arguments from_or : clear implicits. Class IntoOr P Q1 Q2 := into_or : P ⊢ Q1 ∨ Q2. Global Arguments into_or : clear implicits. Class FromExist {A} (P : uPred M) (Φ : A → uPred M) := from_exist : (∃ x, Φ x) ⊢ P. Global Arguments from_exist {_} _ _ {_}. Class IntoExist {A} (P : uPred M) (Φ : A → uPred M) := into_exist : P ⊢ ∃ x, Φ x. Global Arguments into_exist {_} _ _ {_}. Class IntoModal (P Q : uPred M) := into_modal : P ⊢ Q. Global Arguments into_modal : clear implicits. Class ElimModal (P P' : uPred M) (Q Q' : uPred M) := elim_modal : P ∗ (P' -∗ Q') ⊢ Q. Global Arguments elim_modal _ _ _ _ {_}. Lemma elim_modal_dummy P Q : ElimModal P P Q Q. Proof. by rewrite /ElimModal wand_elim_r. Qed. Class IsExcept0 (Q : uPred M) := is_except_0 : ◇ Q ⊢ Q. Global Arguments is_except_0 : clear implicits. End classes.