(* Copyright (c) 2012-2015, Robbert Krebbers. *) (* This file is distributed under the terms of the BSD license. *) (** Properties about arbitrary pre-, partial, and total orders. We do not use the relation [⊆] because we often have multiple orders on the same structure *) From iris.prelude Require Export tactics. Section orders. Context {A} {R : relation A}. Implicit Types X Y : A. Infix "⊆" := R. Notation "X ⊈ Y" := (¬X ⊆ Y). Infix "⊂" := (strict R). Lemma reflexive_eq `{!Reflexive R} X Y : X = Y → X ⊆ Y. Proof. by intros <-. Qed. Lemma anti_symm_iff `{!PartialOrder R} X Y : X = Y ↔ R X Y ∧ R Y X. Proof. split. by intros ->. by intros [??]; apply (anti_symm _). Qed. Lemma strict_spec X Y : X ⊂ Y ↔ X ⊆ Y ∧ Y ⊈ X. Proof. done. Qed. Lemma strict_include X Y : X ⊂ Y → X ⊆ Y. Proof. by intros [? _]. Qed. Lemma strict_ne X Y : X ⊂ Y → X ≠ Y. Proof. by intros [??] <-. Qed. Lemma strict_ne_sym X Y : X ⊂ Y → Y ≠ X. Proof. by intros [??] <-. Qed. Lemma strict_transitive_l `{!Transitive R} X Y Z : X ⊂ Y → Y ⊆ Z → X ⊂ Z. Proof. intros [? HXY] ?. split; [by trans Y|]. contradict HXY. by trans Z. Qed. Lemma strict_transitive_r `{!Transitive R} X Y Z : X ⊆ Y → Y ⊂ Z → X ⊂ Z. Proof. intros ? [? HYZ]. split; [by trans Y|]. contradict HYZ. by trans X. Qed. Global Instance: Irreflexive (strict R). Proof. firstorder. Qed. Global Instance: Transitive R → StrictOrder (strict R). Proof. split; try apply _. eauto using strict_transitive_r, strict_include. Qed. Global Instance preorder_subset_dec_slow `{∀ X Y, Decision (X ⊆ Y)} (X Y : A) : Decision (X ⊂ Y) | 100 := _. Lemma strict_spec_alt `{!AntiSymm (=) R} X Y : X ⊂ Y ↔ X ⊆ Y ∧ X ≠ Y. Proof. split. - intros [? HYX]. split. done. by intros <-. - intros [? HXY]. split. done. by contradict HXY; apply (anti_symm R). Qed. Lemma po_eq_dec `{!PartialOrder R, ∀ X Y, Decision (X ⊆ Y)} : EqDecision A. Proof. refine (λ X Y, cast_if_and (decide (X ⊆ Y)) (decide (Y ⊆ X))); abstract (rewrite anti_symm_iff; tauto). Defined. Lemma total_not `{!Total R} X Y : X ⊈ Y → Y ⊆ X. Proof. intros. destruct (total R X Y); tauto. Qed. Lemma total_not_strict `{!Total R} X Y : X ⊈ Y → Y ⊂ X. Proof. red; auto using total_not. Qed. Global Instance trichotomy_total `{!Trichotomy (strict R), !Reflexive R} : Total R. Proof. intros X Y. destruct (trichotomy (strict R) X Y) as [[??]|[<-|[??]]]; intuition. Qed. End orders. Section strict_orders. Context {A} {R : relation A}. Implicit Types X Y : A. Infix "⊂" := R. Lemma irreflexive_eq `{!Irreflexive R} X Y : X = Y → ¬X ⊂ Y. Proof. intros ->. apply (irreflexivity R). Qed. Lemma strict_anti_symm `{!StrictOrder R} X Y : X ⊂ Y → Y ⊂ X → False. Proof. intros. apply (irreflexivity R X). by trans Y. Qed. Global Instance trichotomyT_dec `{!TrichotomyT R, !StrictOrder R} X Y : Decision (X ⊂ Y) := match trichotomyT R X Y with | inleft (left H) => left H | inleft (right H) => right (irreflexive_eq _ _ H) | inright H => right (strict_anti_symm _ _ H) end. Global Instance trichotomyT_trichotomy `{!TrichotomyT R} : Trichotomy R. Proof. intros X Y. destruct (trichotomyT R X Y) as [[|]|]; tauto. Qed. End strict_orders. Ltac simplify_order := repeat match goal with | _ => progress simplify_eq/= | H : ?R ?x ?x |- _ => by destruct (irreflexivity _ _ H) | H1 : ?R ?x ?y |- _ => match goal with | H2 : R y x |- _ => assert (x = y) by (by apply (anti_symm R)); clear H1 H2 | H2 : R y ?z |- _ => unless (R x z) by done; assert (R x z) by (by trans y) end end.