From iris.program_logic Require Export weakestpre gen_heap. From iris.program_logic Require Import ectx_lifting. From iris.heap_lang Require Export lang. From iris.heap_lang Require Import tactics. From iris.proofmode Require Import tactics. From iris.prelude Require Import fin_maps. Import uPred. (** Basic rules for language operations. *) Class heapG Σ := HeapG { heapG_invG : invG Σ; heapG_gen_heapG :> gen_heapG loc val Σ }. Instance heapG_irisG `{heapG Σ} : irisG heap_lang Σ := { iris_invG := heapG_invG; state_interp := gen_heap_ctx }. Global Opaque iris_invG. (** Override the notations so that scopes and coercions work out *) Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V) (at level 20, q at level 50, format "l ↦{ q } v") : uPred_scope. Notation "l ↦ v" := (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : uPred_scope. Notation "l ↦{ q } -" := (∃ v, l ↦{q} v)%I (at level 20, q at level 50, format "l ↦{ q } -") : uPred_scope. Notation "l ↦ -" := (l ↦{1} -)%I (at level 20) : uPred_scope. (** The tactic [inv_head_step] performs inversion on hypotheses of the shape [head_step]. The tactic will discharge head-reductions starting from values, and simplifies hypothesis related to conversions from and to values, and finite map operations. This tactic is slightly ad-hoc and tuned for proving our lifting lemmas. *) Ltac inv_head_step := repeat match goal with | _ => progress simplify_map_eq/= (* simplify memory stuff *) | H : to_val _ = Some _ |- _ => apply of_to_val in H | H : _ = of_val ?v |- _ => is_var v; destruct v; first[discriminate H|injection H as H] | H : head_step ?e _ _ _ _ |- _ => try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable and can thus better be avoided. *) inversion H; subst; clear H end. Local Hint Extern 0 (atomic _) => solve_atomic. Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _; simpl. Local Hint Constructors head_step. Local Hint Resolve alloc_fresh. Local Hint Resolve to_of_val. Section rules. Context `{heapG Σ}. Implicit Types P Q : iProp Σ. Implicit Types Φ : val → iProp Σ. Implicit Types efs : list expr. Implicit Types σ : state. (** Bind. This bundles some arguments that wp_ectx_bind leaves as indices. *) Lemma wp_bind {E e} K Φ : WP e @ E {{ v, WP fill K (of_val v) @ E {{ Φ }} }} ⊢ WP fill K e @ E {{ Φ }}. Proof. exact: wp_ectx_bind. Qed. Lemma wp_bind_ctxi {E e} Ki Φ : WP e @ E {{ v, WP fill_item Ki (of_val v) @ E {{ Φ }} }} ⊢ WP fill_item Ki e @ E {{ Φ }}. Proof. exact: weakestpre.wp_bind. Qed. (** Base axioms for core primitives of the language: Stateless reductions *) Lemma wp_fork E e Φ : ▷ Φ (LitV LitUnit) ∗ ▷ WP e {{ _, True }} ⊢ WP Fork e @ E {{ Φ }}. Proof. rewrite -(wp_lift_pure_det_head_step (Fork e) (Lit LitUnit) [e]) //=; eauto. - by rewrite later_sep -(wp_value _ _ (Lit _)) // big_sepL_singleton. - intros; inv_head_step; eauto. Qed. Lemma wp_rec E f x erec e1 e2 Φ : e1 = Rec f x erec → is_Some (to_val e2) → Closed (f :b: x :b: []) erec → ▷ WP subst' x e2 (subst' f e1 erec) @ E {{ Φ }} ⊢ WP App e1 e2 @ E {{ Φ }}. Proof. intros -> [v2 ?] ?. rewrite -(wp_lift_pure_det_head_step_no_fork (App _ _) (subst' x e2 (subst' f (Rec f x erec) erec))); eauto. intros; inv_head_step; eauto. Qed. Lemma wp_un_op E op e v v' Φ : to_val e = Some v → un_op_eval op v = Some v' → ▷ Φ v' ⊢ WP UnOp op e @ E {{ Φ }}. Proof. intros. rewrite -(wp_lift_pure_det_head_step_no_fork (UnOp op _) (of_val v')) -?wp_value'; eauto. intros; inv_head_step; eauto. Qed. Lemma wp_bin_op E op e1 e2 v1 v2 v' Φ : to_val e1 = Some v1 → to_val e2 = Some v2 → bin_op_eval op v1 v2 = Some v' → ▷ (Φ v') ⊢ WP BinOp op e1 e2 @ E {{ Φ }}. Proof. intros. rewrite -(wp_lift_pure_det_head_step_no_fork (BinOp op _ _) (of_val v')) -?wp_value'; eauto. intros; inv_head_step; eauto. Qed. Lemma wp_if_true E e1 e2 Φ : ▷ WP e1 @ E {{ Φ }} ⊢ WP If (Lit (LitBool true)) e1 e2 @ E {{ Φ }}. Proof. apply wp_lift_pure_det_head_step_no_fork; eauto. intros; inv_head_step; eauto. Qed. Lemma wp_if_false E e1 e2 Φ : ▷ WP e2 @ E {{ Φ }} ⊢ WP If (Lit (LitBool false)) e1 e2 @ E {{ Φ }}. Proof. apply wp_lift_pure_det_head_step_no_fork; eauto. intros; inv_head_step; eauto. Qed. Lemma wp_fst E e1 v1 e2 Φ : to_val e1 = Some v1 → is_Some (to_val e2) → ▷ Φ v1 ⊢ WP Fst (Pair e1 e2) @ E {{ Φ }}. Proof. intros ? [v2 ?]. rewrite -(wp_lift_pure_det_head_step_no_fork (Fst _) e1) -?wp_value; eauto. intros; inv_head_step; eauto. Qed. Lemma wp_snd E e1 e2 v2 Φ : is_Some (to_val e1) → to_val e2 = Some v2 → ▷ Φ v2 ⊢ WP Snd (Pair e1 e2) @ E {{ Φ }}. Proof. intros [v1 ?] ?. rewrite -(wp_lift_pure_det_head_step_no_fork (Snd _) e2) -?wp_value; eauto. intros; inv_head_step; eauto. Qed. Lemma wp_case_inl E e0 e1 e2 Φ : is_Some (to_val e0) → ▷ WP App e1 e0 @ E {{ Φ }} ⊢ WP Case (InjL e0) e1 e2 @ E {{ Φ }}. Proof. intros [v0 ?]. rewrite -(wp_lift_pure_det_head_step_no_fork (Case _ _ _) (App e1 e0)); eauto. intros; inv_head_step; eauto. Qed. Lemma wp_case_inr E e0 e1 e2 Φ : is_Some (to_val e0) → ▷ WP App e2 e0 @ E {{ Φ }} ⊢ WP Case (InjR e0) e1 e2 @ E {{ Φ }}. Proof. intros [v0 ?]. rewrite -(wp_lift_pure_det_head_step_no_fork (Case _ _ _) (App e2 e0)); eauto. intros; inv_head_step; eauto. Qed. (** Heap *) Lemma wp_alloc E e v : to_val e = Some v → {{{ True }}} Alloc e @ E {{{ l, RET LitV (LitLoc l); l ↦ v }}}. Proof. iIntros (<-%of_to_val Φ) "HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1) "Hσ !>"; iSplit; first by auto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma wp_load E l q v : {{{ ▷ l ↦{q} v }}} Load (Lit (LitLoc l)) @ E {{{ RET v; l ↦{q} v }}}. Proof. iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma wp_store E l v' e v : to_val e = Some v → {{{ ▷ l ↦ v' }}} Store (Lit (LitLoc l)) e @ E {{{ RET LitV LitUnit; l ↦ v }}}. Proof. iIntros (<-%of_to_val Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. by iApply "HΦ". Qed. Lemma wp_cas_fail E l q v' e1 v1 e2 v2 : to_val e1 = Some v1 → to_val e2 = Some v2 → v' ≠ v1 → {{{ ▷ l ↦{q} v' }}} CAS (Lit (LitLoc l)) e1 e2 @ E {{{ RET LitV (LitBool false); l ↦{q} v' }}}. Proof. iIntros (<-%of_to_val <-%of_to_val ? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma wp_cas_suc E l e1 v1 e2 v2 : to_val e1 = Some v1 → to_val e2 = Some v2 → {{{ ▷ l ↦ v1 }}} CAS (Lit (LitLoc l)) e1 e2 @ E {{{ RET LitV (LitBool true); l ↦ v2 }}}. Proof. iIntros (<-%of_to_val <-%of_to_val Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. by iApply "HΦ". Qed. (** Proof rules for derived constructs *) Lemma wp_lam E x elam e1 e2 Φ : e1 = Lam x elam → is_Some (to_val e2) → Closed (x :b: []) elam → ▷ WP subst' x e2 elam @ E {{ Φ }} ⊢ WP App e1 e2 @ E {{ Φ }}. Proof. intros. by rewrite -(wp_rec _ BAnon) //. Qed. Lemma wp_let E x e1 e2 Φ : is_Some (to_val e1) → Closed (x :b: []) e2 → ▷ WP subst' x e1 e2 @ E {{ Φ }} ⊢ WP Let x e1 e2 @ E {{ Φ }}. Proof. by apply wp_lam. Qed. Lemma wp_seq E e1 e2 Φ : is_Some (to_val e1) → Closed [] e2 → ▷ WP e2 @ E {{ Φ }} ⊢ WP Seq e1 e2 @ E {{ Φ }}. Proof. intros ??. by rewrite -wp_let. Qed. Lemma wp_skip E Φ : ▷ Φ (LitV LitUnit) ⊢ WP Skip @ E {{ Φ }}. Proof. rewrite -wp_seq; last eauto. by rewrite -wp_value. Qed. Lemma wp_match_inl E e0 x1 e1 x2 e2 Φ : is_Some (to_val e0) → Closed (x1 :b: []) e1 → ▷ WP subst' x1 e0 e1 @ E {{ Φ }} ⊢ WP Match (InjL e0) x1 e1 x2 e2 @ E {{ Φ }}. Proof. intros. by rewrite -wp_case_inl // -[X in _ ⊢ X]later_intro -wp_let. Qed. Lemma wp_match_inr E e0 x1 e1 x2 e2 Φ : is_Some (to_val e0) → Closed (x2 :b: []) e2 → ▷ WP subst' x2 e0 e2 @ E {{ Φ }} ⊢ WP Match (InjR e0) x1 e1 x2 e2 @ E {{ Φ }}. Proof. intros. by rewrite -wp_case_inr // -[X in _ ⊢ X]later_intro -wp_let. Qed. Lemma wp_le E (n1 n2 : Z) P Φ : (n1 ≤ n2 → P ⊢ ▷ Φ (LitV (LitBool true))) → (n2 < n1 → P ⊢ ▷ Φ (LitV (LitBool false))) → P ⊢ WP BinOp LeOp (Lit (LitInt n1)) (Lit (LitInt n2)) @ E {{ Φ }}. Proof. intros. rewrite -wp_bin_op //; []. destruct (bool_decide_reflect (n1 ≤ n2)); by eauto with omega. Qed. Lemma wp_lt E (n1 n2 : Z) P Φ : (n1 < n2 → P ⊢ ▷ Φ (LitV (LitBool true))) → (n2 ≤ n1 → P ⊢ ▷ Φ (LitV (LitBool false))) → P ⊢ WP BinOp LtOp (Lit (LitInt n1)) (Lit (LitInt n2)) @ E {{ Φ }}. Proof. intros. rewrite -wp_bin_op //; []. destruct (bool_decide_reflect (n1 < n2)); by eauto with omega. Qed. Lemma wp_eq E e1 e2 v1 v2 P Φ : to_val e1 = Some v1 → to_val e2 = Some v2 → (v1 = v2 → P ⊢ ▷ Φ (LitV (LitBool true))) → (v1 ≠ v2 → P ⊢ ▷ Φ (LitV (LitBool false))) → P ⊢ WP BinOp EqOp e1 e2 @ E {{ Φ }}. Proof. intros. rewrite -wp_bin_op //; []. destruct (bool_decide_reflect (v1 = v2)); by eauto. Qed. End rules.