From iris.algebra Require Export cmra. From iris.algebra Require Import updates local_updates. From iris.prelude Require Export collections coPset. (** This is pretty much the same as algebra/gset, but I was not able to generalize the construction without breaking canonical structures. *) (* The union CMRA *) Section coPset. Implicit Types X Y : coPset. Canonical Structure coPsetC := discreteC coPset. Instance coPset_valid : Valid coPset := λ _, True. Instance coPset_op : Op coPset := union. Instance coPset_pcore : PCore coPset := Some. Lemma coPset_op_union X Y : X ⋅ Y = X ∪ Y. Proof. done. Qed. Lemma coPset_core_self X : core X = X. Proof. done. Qed. Lemma coPset_included X Y : X ≼ Y ↔ X ⊆ Y. Proof. split. - intros [Z ->]. rewrite coPset_op_union. set_solver. - intros (Z&->&?)%subseteq_disjoint_union_L. by exists Z. Qed. Lemma coPset_ra_mixin : RAMixin coPset. Proof. apply ra_total_mixin; eauto. - solve_proper. - solve_proper. - solve_proper. - intros X1 X2 X3. by rewrite !coPset_op_union assoc_L. - intros X1 X2. by rewrite !coPset_op_union comm_L. - intros X. by rewrite coPset_core_self idemp_L. Qed. Canonical Structure coPsetR := discreteR coPset coPset_ra_mixin. Lemma coPset_ucmra_mixin : UCMRAMixin coPset. Proof. split. done. intros X. by rewrite coPset_op_union left_id_L. done. Qed. Canonical Structure coPsetUR := discreteUR coPset coPset_ra_mixin coPset_ucmra_mixin. Lemma coPset_opM X mY : X ⋅? mY = X ∪ from_option id ∅ mY. Proof. destruct mY; by rewrite /= ?right_id_L. Qed. Lemma coPset_update X Y : X ~~> Y. Proof. done. Qed. Lemma coPset_local_update X Y X' : X ⊆ X' → (X,Y) ~l~> (X',X'). Proof. intros (Z&->&?)%subseteq_disjoint_union_L. rewrite local_update_unital_discrete=> Z' _ /leibniz_equiv_iff->. split. done. rewrite coPset_op_union. set_solver. Qed. End coPset. (* The disjoiny union CMRA *) Inductive coPset_disj := | CoPset : coPset → coPset_disj | CoPsetBot : coPset_disj. Section coPset_disj. Arguments op _ _ !_ !_ /. Canonical Structure coPset_disjC := leibnizC coPset_disj. Instance coPset_disj_valid : Valid coPset_disj := λ X, match X with CoPset _ => True | CoPsetBot => False end. Instance coPset_disj_empty : Empty coPset_disj := CoPset ∅. Instance coPset_disj_op : Op coPset_disj := λ X Y, match X, Y with | CoPset X, CoPset Y => if decide (X ⊥ Y) then CoPset (X ∪ Y) else CoPsetBot | _, _ => CoPsetBot end. Instance coPset_disj_pcore : PCore coPset_disj := λ _, Some ∅. Ltac coPset_disj_solve := repeat (simpl || case_decide); first [apply (f_equal CoPset)|done|exfalso]; set_solver by eauto. Lemma coPset_disj_included X Y : CoPset X ≼ CoPset Y ↔ X ⊆ Y. Proof. split. - move=> [[Z|]]; simpl; try case_decide; set_solver. - intros (Z&->&?)%subseteq_disjoint_union_L. exists (CoPset Z). coPset_disj_solve. Qed. Lemma coPset_disj_valid_inv_l X Y : ✓ (CoPset X ⋅ Y) → ∃ Y', Y = CoPset Y' ∧ X ⊥ Y'. Proof. destruct Y; repeat (simpl || case_decide); by eauto. Qed. Lemma coPset_disj_union X Y : X ⊥ Y → CoPset X ⋅ CoPset Y = CoPset (X ∪ Y). Proof. intros. by rewrite /= decide_True. Qed. Lemma coPset_disj_valid_op X Y : ✓ (CoPset X ⋅ CoPset Y) ↔ X ⊥ Y. Proof. simpl. case_decide; by split. Qed. Lemma coPset_disj_ra_mixin : RAMixin coPset_disj. Proof. apply ra_total_mixin; eauto. - intros [?|]; destruct 1; coPset_disj_solve. - by constructor. - by destruct 1. - intros [X1|] [X2|] [X3|]; coPset_disj_solve. - intros [X1|] [X2|]; coPset_disj_solve. - intros [X|]; coPset_disj_solve. - exists (CoPset ∅); coPset_disj_solve. - intros [X1|] [X2|]; coPset_disj_solve. Qed. Canonical Structure coPset_disjR := discreteR coPset_disj coPset_disj_ra_mixin. Lemma coPset_disj_ucmra_mixin : UCMRAMixin coPset_disj. Proof. split; try apply _ || done. intros [X|]; coPset_disj_solve. Qed. Canonical Structure coPset_disjUR := discreteUR coPset_disj coPset_disj_ra_mixin coPset_disj_ucmra_mixin. End coPset_disj.