Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Janno
iris-coq
Commits
ed383a77
Commit
ed383a77
authored
Oct 13, 2016
by
Ralf Jung
Browse files
Make everything compile with Coq 8.6
parent
a5f94780
Changes
3
Hide whitespace changes
Inline
Side-by-side
prelude/list.v
View file @
ed383a77
...
...
@@ -2234,7 +2234,12 @@ Section Forall_Exists.
Lemma
not_Forall_Exists
l
:
¬
Forall
P
l
→
Exists
(
not
∘
P
)
l
.
Proof
.
intro
.
destruct
(
Forall_Exists_dec
dec
l
)
;
intuition
.
Qed
.
Lemma
not_Exists_Forall
l
:
¬
Exists
P
l
→
Forall
(
not
∘
P
)
l
.
Proof
.
by
destruct
(
Forall_Exists_dec
(
λ
x
,
swap_if
(
decide
(
P
x
)))
l
).
Qed
.
Proof
.
(* TODO: Coq 8.6 needs type annotation here, Coq 8.5 did not.
Should we report this? *)
by
destruct
(@
Forall_Exists_dec
(
not
∘
P
)
_
(
λ
x
:
A
,
swap_if
(
decide
(
P
x
)))
l
).
Qed
.
Global
Instance
Forall_dec
l
:
Decision
(
Forall
P
l
)
:
=
match
Forall_Exists_dec
dec
l
with
|
left
H
=>
left
H
...
...
program_logic/namespaces.v
View file @
ed383a77
...
...
@@ -52,7 +52,8 @@ Section ndisjoint.
Lemma
ndot_ne_disjoint
N
x
y
:
x
≠
y
→
N
.@
x
⊥
N
.@
y
.
Proof
.
intros
Hxy
a
.
rewrite
!
nclose_eq
!
elem_coPset_suffixes
!
ndot_eq
.
intros
[
qx
->]
[
qy
].
by
intros
[=
?%
encode_inj
]%
list_encode_suffix_eq
.
intros
[
qx
->]
[
qy
Hqy
].
revert
Hqy
.
by
intros
[=
?%
encode_inj
]%
list_encode_suffix_eq
.
Qed
.
Lemma
ndot_preserve_disjoint_l
N
E
x
:
nclose
N
⊥
E
→
nclose
(
N
.@
x
)
⊥
E
.
...
...
proofmode/tactics.v
View file @
ed383a77
...
...
@@ -834,7 +834,7 @@ Tactic Notation "iRevertIntros" constr(Hs) "with" tactic(tac) :=
|
ESelName
?p
?H
::
?Hs
=>
iRevert
H
;
go
Hs
;
let
H'
:
=
match
p
with
true
=>
constr
:
[
IAlwaysElim
(
IName
H
)]
|
false
=>
H
end
in
match
p
with
true
=>
constr
:
(
[
IAlwaysElim
(
IName
H
)]
)
|
false
=>
H
end
in
iIntros
H'
end
in
iElaborateSelPat
Hs
go
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment