Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Janno
iris-coq
Commits
a2dab2fb
Commit
a2dab2fb
authored
Jun 18, 2018
by
Ralf Jung
Browse files
make coercions explicit to improve readability
parent
598b8449
Changes
1
Hide whitespace changes
Inline
Side-by-side
theories/proofmode/classes.v
View file @
a2dab2fb
...
...
@@ -505,16 +505,19 @@ Hint Mode IntoEmbed + + + ! - : typeclass_instances.
No Hint Modes are declared here. The appropriate one would be
[Hint Mode - ! -], but the fact that Coq ignores primitive
projections for hints modes would make this fail.*)
Class
AsEmpValid
{
PROP
:
bi
}
(
φ
:
Prop
)
(
P
:
PROP
)
:
=
as_emp_valid
:
φ
↔
P
.
Class
AsEmpValid
{
PROP
:
bi
}
(
φ
:
Prop
)
(
P
:
PROP
)
:
=
as_emp_valid
:
φ
↔
bi_emp_valid
P
.
Arguments
AsEmpValid
{
_
}
_
%
type
_
%
I
.
Class
AsEmpValid0
{
PROP
:
bi
}
(
φ
:
Prop
)
(
P
:
PROP
)
:
=
as_emp_valid_here
:
AsEmpValid
φ
P
.
Arguments
AsEmpValid0
{
_
}
_
%
type
_
%
I
.
Existing
Instance
as_emp_valid_here
|
0
.
Lemma
as_emp_valid_1
(
φ
:
Prop
)
{
PROP
:
bi
}
(
P
:
PROP
)
`
{!
AsEmpValid
φ
P
}
:
φ
→
P
.
Lemma
as_emp_valid_1
(
φ
:
Prop
)
{
PROP
:
bi
}
(
P
:
PROP
)
`
{!
AsEmpValid
φ
P
}
:
φ
→
bi_emp_valid
P
.
Proof
.
by
apply
as_emp_valid
.
Qed
.
Lemma
as_emp_valid_2
(
φ
:
Prop
)
{
PROP
:
bi
}
(
P
:
PROP
)
`
{!
AsEmpValid
φ
P
}
:
P
→
φ
.
Lemma
as_emp_valid_2
(
φ
:
Prop
)
{
PROP
:
bi
}
(
P
:
PROP
)
`
{!
AsEmpValid
φ
P
}
:
bi_emp_valid
P
→
φ
.
Proof
.
by
apply
as_emp_valid
.
Qed
.
(* Input: [P]; Outputs: [N],
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment