### also pre-reserve bigops notation

parent f9e88985
 ... ... @@ -5,40 +5,26 @@ Set Default Proof Using "Type". Import interface.bi derived_laws_bi.bi. (* Notations *) Notation "'[∗' 'list]' k ↦ x ∈ l , P" := (big_opL bi_sep (λ k x, P) l) (at level 200, l at level 10, k, x at level 1, right associativity, format "[∗ list] k ↦ x ∈ l , P") : bi_scope. Notation "'[∗' 'list]' x ∈ l , P" := (big_opL bi_sep (λ _ x, P) l) (at level 200, l at level 10, x at level 1, right associativity, format "[∗ list] x ∈ l , P") : bi_scope. Notation "'[∗]' Ps" := (big_opL bi_sep (λ _ x, x) Ps) (at level 20) : bi_scope. Notation "'[∧' 'list]' k ↦ x ∈ l , P" := (big_opL bi_and (λ k x, P) l) (at level 200, l at level 10, k, x at level 1, right associativity, format "[∧ list] k ↦ x ∈ l , P") : bi_scope. Notation "'[∧' 'list]' x ∈ l , P" := (big_opL bi_and (λ _ x, P) l) (at level 200, l at level 10, x at level 1, right associativity, format "[∧ list] x ∈ l , P") : bi_scope. Notation "'[∧]' Ps" := (big_opL bi_and (λ _ x, x) Ps) (at level 20) : bi_scope. Notation "'[∗' 'map]' k ↦ x ∈ m , P" := (big_opM bi_sep (λ k x, P) m) (at level 200, m at level 10, k, x at level 1, right associativity, format "[∗ map] k ↦ x ∈ m , P") : bi_scope. Notation "'[∗' 'map]' x ∈ m , P" := (big_opM bi_sep (λ _ x, P) m) (at level 200, m at level 10, x at level 1, right associativity, format "[∗ map] x ∈ m , P") : bi_scope. Notation "'[∗' 'set]' x ∈ X , P" := (big_opS bi_sep (λ x, P) X) (at level 200, X at level 10, x at level 1, right associativity, format "[∗ set] x ∈ X , P") : bi_scope. Notation "'[∗' 'mset]' x ∈ X , P" := (big_opMS bi_sep (λ x, P) X) (at level 200, X at level 10, x at level 1, right associativity, format "[∗ mset] x ∈ X , P") : bi_scope. Notation "'[∗' 'list]' k ↦ x ∈ l , P" := (big_opL bi_sep (λ k x, P) l) : bi_scope. Notation "'[∗' 'list]' x ∈ l , P" := (big_opL bi_sep (λ _ x, P) l) : bi_scope. Notation "'[∗]' Ps" := (big_opL bi_sep (λ _ x, x) Ps) : bi_scope. Notation "'[∧' 'list]' k ↦ x ∈ l , P" := (big_opL bi_and (λ k x, P) l) : bi_scope. Notation "'[∧' 'list]' x ∈ l , P" := (big_opL bi_and (λ _ x, P) l) : bi_scope. Notation "'[∧]' Ps" := (big_opL bi_and (λ _ x, x) Ps) : bi_scope. Notation "'[∗' 'map]' k ↦ x ∈ m , P" := (big_opM bi_sep (λ k x, P) m) : bi_scope. Notation "'[∗' 'map]' x ∈ m , P" := (big_opM bi_sep (λ _ x, P) m) : bi_scope. Notation "'[∗' 'set]' x ∈ X , P" := (big_opS bi_sep (λ x, P) X) : bi_scope. Notation "'[∗' 'mset]' x ∈ X , P" := (big_opMS bi_sep (λ x, P) X) : bi_scope. (** * Properties *) Section bi_big_op. ... ...
 (** Just reserve the notation. *) (** Turnstiles *) Reserved Notation "P ⊢ Q" (at level 99, Q at level 200, right associativity). Reserved Notation "P '⊢@{' PROP } Q" (at level 99, Q at level 200, right associativity). Reserved Notation "('⊢@{' PROP } )" (at level 99). Reserved Notation "P ⊣⊢ Q" (at level 95, no associativity). Reserved Notation "P '⊣⊢@{' PROP } Q" (at level 95, no associativity). Reserved Notation "('⊣⊢@{' PROP } )" (at level 95). (** BI connectives *) Reserved Notation "'emp'". Reserved Notation "'⌜' φ '⌝'" (at level 1, φ at level 200, format "⌜ φ ⌝"). Reserved Notation "P ∗ Q" (at level 80, right associativity). Reserved Notation "P -∗ Q" (at level 99, Q at level 200, right associativity). (** Modalities *) Reserved Notation "'' P" (at level 20, right associativity). Reserved Notation "'?' p P" (at level 20, p at level 9, P at level 20, right associativity, format "'?' p P"). ... ... @@ -38,6 +43,7 @@ Reserved Notation "■ P" (at level 20, right associativity). Reserved Notation "■? p P" (at level 20, p at level 9, P at level 20, right associativity, format "■? p P"). (** Update modalities *) Reserved Notation "|==> Q" (at level 99, Q at level 200, format "|==> Q"). Reserved Notation "P ==∗ Q" (at level 99, Q at level 200, format "P ==∗ Q"). ... ... @@ -68,5 +74,39 @@ Reserved Notation "P ={ E }▷=∗ Q" (at level 99, E at level 50, Q at level 200, format "P ={ E }▷=∗ Q"). (** Big Ops *) Reserved Notation "'[∗' 'list]' k ↦ x ∈ l , P" (at level 200, l at level 10, k, x at level 1, right associativity, format "[∗ list] k ↦ x ∈ l , P"). Reserved Notation "'[∗' 'list]' x ∈ l , P" (at level 200, l at level 10, x at level 1, right associativity, format "[∗ list] x ∈ l , P"). Reserved Notation "'[∗]' Ps" (at level 20). Reserved Notation "'[∧' 'list]' k ↦ x ∈ l , P" (at level 200, l at level 10, k, x at level 1, right associativity, format "[∧ list] k ↦ x ∈ l , P"). Reserved Notation "'[∧' 'list]' x ∈ l , P" (at level 200, l at level 10, x at level 1, right associativity, format "[∧ list] x ∈ l , P"). Reserved Notation "'[∧]' Ps" (at level 20). Reserved Notation "'[∗' 'map]' k ↦ x ∈ m , P" (at level 200, m at level 10, k, x at level 1, right associativity, format "[∗ map] k ↦ x ∈ m , P"). Reserved Notation "'[∗' 'map]' x ∈ m , P" (at level 200, m at level 10, x at level 1, right associativity, format "[∗ map] x ∈ m , P"). Reserved Notation "'[∗' 'set]' x ∈ X , P" (at level 200, X at level 10, x at level 1, right associativity, format "[∗ set] x ∈ X , P"). Reserved Notation "'[∗' 'mset]' x ∈ X , P" (at level 200, X at level 10, x at level 1, right associativity, format "[∗ mset] x ∈ X , P"). (** Define the scope *) Delimit Scope bi_scope with I.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!