Commit 5d0644f4 authored by Ralf Jung's avatar Ralf Jung

consistently use pm_prettify for post-tactic simplification

parent 79ea27b3
......@@ -293,7 +293,7 @@ Tactic Notation "iPureIntro" :=
(** Framing *)
Local Ltac iFrameFinish :=
lazy iota beta;
pm_prettify;
try match goal with
| |- envs_entails _ True => by iPureIntro
| |- envs_entails _ emp => iEmpIntro
......@@ -408,7 +408,7 @@ Local Tactic Notation "iIntro" "(" simple_intropattern(x) ")" :=
[iSolveTC ||
let P := match goal with |- FromForall ?P _ => P end in
fail "iIntro: cannot turn" P "into a universal quantifier"
|lazy beta; intros x]
|pm_prettify; intros x]
end).
Local Tactic Notation "iIntro" constr(H) :=
......@@ -1000,7 +1000,7 @@ Tactic Notation "iExists" uconstr(x1) :=
[iSolveTC ||
let P := match goal with |- FromExist ?P _ => P end in
fail "iExists:" P "not an existential"
|cbv beta; eexists x1].
|pm_prettify; eexists x1].
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) :=
iExists x1; iExists x2.
......@@ -1882,7 +1882,7 @@ Local Tactic Notation "iRewriteCore" constr(lr) open_constr(lem) :=
let P := match goal with |- IntoInternalEq ?P _ _ _ => P end in
fail "iRewrite:" P "not an equality"
|iRewriteFindPred
|intros ??? ->; reflexivity|lazy beta; iClearHyp Heq]).
|intros ??? ->; reflexivity|pm_prettify; iClearHyp Heq]).
Tactic Notation "iRewrite" open_constr(lem) := iRewriteCore Right lem.
Tactic Notation "iRewrite" "-" open_constr(lem) := iRewriteCore Left lem.
......@@ -1901,7 +1901,7 @@ Local Tactic Notation "iRewriteCore" constr(lr) open_constr(lem) "in" constr(H)
fail "iRewrite:" P "not an equality"
|iRewriteFindPred
|intros ??? ->; reflexivity
|pm_reflexivity|lazy beta; iClearHyp Heq]).
|pm_reflexivity|pm_prettify; iClearHyp Heq]).
Tactic Notation "iRewrite" open_constr(lem) "in" constr(H) :=
iRewriteCore Right lem in H.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment