fancy_updates.v 8.92 KB
Newer Older
1
2
From iris.base_logic.lib Require Export own.
From iris.prelude Require Export coPset.
3
From iris.base_logic.lib Require Import wsat.
4
5
From iris.algebra Require Import gmap.
From iris.base_logic Require Import big_op.
6
From iris.proofmode Require Import tactics classes.
7
Export invG.
8
9
Import uPred.

10
Program Definition fupd_def `{invG Σ}
11
    (E1 E2 : coPset) (P : iProp Σ) : iProp Σ :=
12
  (wsat  ownE E1 ==  (wsat  ownE E2  P))%I.
13
14
15
Definition fupd_aux : { x | x = @fupd_def }. by eexists. Qed.
Definition fupd := proj1_sig fupd_aux.
Definition fupd_eq : @fupd = @fupd_def := proj2_sig fupd_aux.
16
17
Arguments fupd {_ _} _ _ _%I.
Instance: Params (@fupd) 4.
18
19
20
21

Notation "|={ E1 , E2 }=> Q" := (fupd E1 E2 Q)
  (at level 99, E1, E2 at level 50, Q at level 200,
   format "|={ E1 , E2 }=>  Q") : uPred_scope.
22
Notation "P ={ E1 , E2 }=∗ Q" := (P - |={E1,E2}=> Q)%I
23
  (at level 99, E1,E2 at level 50, Q at level 200,
24
25
   format "P  ={ E1 , E2 }=∗  Q") : uPred_scope.
Notation "P ={ E1 , E2 }=∗ Q" := (P  |={E1,E2}=> Q)
26
27
28
29
30
  (at level 99, E1, E2 at level 50, Q at level 200, only parsing) : C_scope.

Notation "|={ E }=> Q" := (fupd E E Q)
  (at level 99, E at level 50, Q at level 200,
   format "|={ E }=>  Q") : uPred_scope.
31
Notation "P ={ E }=∗ Q" := (P - |={E}=> Q)%I
32
  (at level 99, E at level 50, Q at level 200,
33
34
   format "P  ={ E }=∗  Q") : uPred_scope.
Notation "P ={ E }=∗ Q" := (P  |={E}=> Q)
35
36
37
  (at level 99, E at level 50, Q at level 200, only parsing) : C_scope.

Section fupd.
38
Context `{invG Σ}.
39
40
Implicit Types P Q : iProp Σ.

41
Global Instance fupd_ne E1 E2 n : Proper (dist n ==> dist n) (@fupd Σ _ E1 E2).
42
Proof. rewrite fupd_eq. solve_proper. Qed.
43
Global Instance fupd_proper E1 E2 : Proper (() ==> ()) (@fupd Σ _ E1 E2).
44
45
46
47
48
Proof. apply ne_proper, _. Qed.

Lemma fupd_intro_mask E1 E2 P : E2  E1  P  |={E1,E2}=> |={E2,E1}=> P.
Proof.
  intros (E1''&->&?)%subseteq_disjoint_union_L.
49
50
  rewrite fupd_eq /fupd_def ownE_op //.
  by iIntros "$ ($ & $ & HE) !> !> [$ $] !> !>" .
51
52
Qed.

53
Lemma except_0_fupd E1 E2 P :  (|={E1,E2}=> P) ={E1,E2}= P.
54
Proof. rewrite fupd_eq. iIntros ">H [Hw HE]". iApply "H"; by iFrame. Qed.
55

56
Lemma bupd_fupd E P : (|==> P) ={E}= P.
57
Proof. rewrite fupd_eq /fupd_def. by iIntros ">? [$ $] !> !>". Qed.
58

59
Lemma fupd_mono E1 E2 P Q : (P  Q)  (|={E1,E2}=> P) ={E1,E2}= Q.
60
61
62
63
64
Proof.
  rewrite fupd_eq /fupd_def. iIntros (HPQ) "HP HwE".
  rewrite -HPQ. by iApply "HP".
Qed.

65
Lemma fupd_trans E1 E2 E3 P : (|={E1,E2}=> |={E2,E3}=> P) ={E1,E3}= P.
66
67
Proof.
  rewrite fupd_eq /fupd_def. iIntros "HP HwE".
68
  iMod ("HP" with "HwE") as ">(Hw & HE & HP)". iApply "HP"; by iFrame.
69
70
71
Qed.

Lemma fupd_mask_frame_r' E1 E2 Ef P :
72
  E1  Ef  (|={E1,E2}=> E2  Ef  P) ={E1  Ef,E2  Ef}= P.
73
74
Proof.
  intros. rewrite fupd_eq /fupd_def ownE_op //. iIntros "Hvs (Hw & HE1 &HEf)".
75
  iMod ("Hvs" with "[Hw HE1]") as ">($ & HE2 & HP)"; first by iFrame.
76
  iDestruct (ownE_op' with "[HE2 HEf]") as "[? $]"; first by iFrame.
77
  iIntros "!> !>". by iApply "HP".
78
79
Qed.

80
Lemma fupd_frame_r E1 E2 P Q : (|={E1,E2}=> P)  Q ={E1,E2}= P  Q.
81
82
83
Proof. rewrite fupd_eq /fupd_def. by iIntros "[HwP $]". Qed.

(** * Derived rules *)
84
Global Instance fupd_mono' E1 E2 : Proper (() ==> ()) (@fupd Σ _ E1 E2).
85
86
Proof. intros P Q; apply fupd_mono. Qed.
Global Instance fupd_flip_mono' E1 E2 :
87
  Proper (flip () ==> flip ()) (@fupd Σ _ E1 E2).
88
89
Proof. intros P Q; apply fupd_mono. Qed.

90
Lemma fupd_intro E P : P ={E}= P.
91
92
93
Proof. iIntros "HP". by iApply bupd_fupd. Qed.
Lemma fupd_intro_mask' E1 E2 : E2  E1  True  |={E1,E2}=> |={E2,E1}=> True.
Proof. exact: fupd_intro_mask. Qed.
94
Lemma fupd_except_0 E1 E2 P : (|={E1,E2}=>  P) ={E1,E2}= P.
95
Proof. by rewrite {1}(fupd_intro E2 P) except_0_fupd fupd_trans. Qed.
96

97
Lemma fupd_frame_l E1 E2 P Q : (P  |={E1,E2}=> Q) ={E1,E2}= P  Q.
98
Proof. rewrite !(comm _ P); apply fupd_frame_r. Qed.
99
Lemma fupd_wand_l E1 E2 P Q : (P - Q)  (|={E1,E2}=> P) ={E1,E2}= Q.
100
Proof. by rewrite fupd_frame_l wand_elim_l. Qed.
101
Lemma fupd_wand_r E1 E2 P Q : (|={E1,E2}=> P)  (P - Q) ={E1,E2}= Q.
102
103
104
Proof. by rewrite fupd_frame_r wand_elim_r. Qed.

Lemma fupd_trans_frame E1 E2 E3 P Q :
105
  ((Q ={E2,E3}= True)  |={E1,E2}=> (Q  P)) ={E1,E3}= P.
106
107
108
109
110
111
Proof.
  rewrite fupd_frame_l assoc -(comm _ Q) wand_elim_r.
  by rewrite fupd_frame_r left_id fupd_trans.
Qed.

Lemma fupd_mask_frame_r E1 E2 Ef P :
112
  E1  Ef  (|={E1,E2}=> P) ={E1  Ef,E2  Ef}= P.
113
114
115
116
Proof.
  iIntros (?) "H". iApply fupd_mask_frame_r'; auto.
  iApply fupd_wand_r; iFrame "H"; eauto.
Qed.
117
Lemma fupd_mask_mono E1 E2 P : E1  E2  (|={E1}=> P) ={E2}= P.
118
119
120
121
Proof.
  intros (Ef&->&?)%subseteq_disjoint_union_L. by apply fupd_mask_frame_r.
Qed.

122
Lemma fupd_sep E P Q : (|={E}=> P)  (|={E}=> Q) ={E}= P  Q.
123
124
Proof. by rewrite fupd_frame_r fupd_frame_l fupd_trans. Qed.
Lemma fupd_big_sepM `{Countable K} {A} E (Φ : K  A  iProp Σ) (m : gmap K A) :
125
  ([ map] kx  m, |={E}=> Φ k x) ={E}= [ map] kx  m, Φ k x.
126
Proof.
127
  apply (big_opM_forall (λ P Q, P ={E}= Q)); auto using fupd_intro.
128
129
130
  intros P1 P2 HP Q1 Q2 HQ. by rewrite HP HQ -fupd_sep.
Qed.
Lemma fupd_big_sepS `{Countable A} E (Φ : A  iProp Σ) X :
131
  ([ set] x  X, |={E}=> Φ x) ={E}= [ set] x  X, Φ x.
132
Proof.
133
  apply (big_opS_forall (λ P Q, P ={E}= Q)); auto using fupd_intro.
134
135
136
137
138
139
  intros P1 P2 HP Q1 Q2 HQ. by rewrite HP HQ -fupd_sep.
Qed.
End fupd.

(** Proofmode class instances *)
Section proofmode_classes.
140
  Context `{invG Σ}.
141
142
143
144
145
146
  Implicit Types P Q : iProp Σ.

  Global Instance from_pure_fupd E P φ : FromPure P φ  FromPure (|={E}=> P) φ.
  Proof. rewrite /FromPure. intros <-. apply fupd_intro. Qed.

  Global Instance from_assumption_fupd E p P Q :
147
    FromAssumption p P (|==> Q)  FromAssumption p P (|={E}=> Q)%I.
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
  Proof. rewrite /FromAssumption=>->. apply bupd_fupd. Qed.

  Global Instance into_wand_fupd E1 E2 R P Q :
    IntoWand R P Q  IntoWand R (|={E1,E2}=> P) (|={E1,E2}=> Q) | 100.
  Proof. rewrite /IntoWand=>->. apply wand_intro_l. by rewrite fupd_wand_r. Qed.

  Global Instance from_sep_fupd E P Q1 Q2 :
    FromSep P Q1 Q2  FromSep (|={E}=> P) (|={E}=> Q1) (|={E}=> Q2).
  Proof. rewrite /FromSep=><-. apply fupd_sep. Qed.

  Global Instance or_split_fupd E1 E2 P Q1 Q2 :
    FromOr P Q1 Q2  FromOr (|={E1,E2}=> P) (|={E1,E2}=> Q1) (|={E1,E2}=> Q2).
  Proof. rewrite /FromOr=><-. apply or_elim; apply fupd_mono; auto with I. Qed.

  Global Instance exists_split_fupd {A} E1 E2 P (Φ : A  iProp Σ) :
    FromExist P Φ  FromExist (|={E1,E2}=> P) (λ a, |={E1,E2}=> Φ a)%I.
  Proof.
    rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a).
  Qed.

  Global Instance frame_fupd E1 E2 R P Q :
    Frame R P Q  Frame R (|={E1,E2}=> P) (|={E1,E2}=> Q).
  Proof. rewrite /Frame=><-. by rewrite fupd_frame_l. Qed.

172
173
  Global Instance is_except_0_fupd E1 E2 P : IsExcept0 (|={E1,E2}=> P).
  Proof. by rewrite /IsExcept0 except_0_fupd. Qed.
174

175
176
  Global Instance into_modal_fupd E P : IntoModal P (|={E}=> P).
  Proof. rewrite /IntoModal. apply fupd_intro. Qed.
177

178
179
180
181
182
183
184
185
  Global Instance elim_modal_bupd_fupd E1 E2 P Q :
    ElimModal (|==> P) P (|={E1,E2}=> Q) (|={E1,E2}=> Q).
  Proof.
    by rewrite /ElimModal (bupd_fupd E1) fupd_frame_r wand_elim_r fupd_trans.
 Qed.
  Global Instance elim_modal_fupd_fupd E1 E2 E3 P Q :
    ElimModal (|={E1,E2}=> P) P (|={E1,E3}=> Q) (|={E2,E3}=> Q).
  Proof. by rewrite /ElimModal fupd_frame_r wand_elim_r fupd_trans. Qed.
186
187
188
End proofmode_classes.

Hint Extern 2 (coq_tactics.of_envs _  _) =>
189
  match goal with |- _  |={_}=> _ => iModIntro end.
190
191
192
193
194
195

(** Fancy updates that take a step. *)

Notation "|={ E1 , E2 }▷=> Q" := (|={E1,E2}=> ( |={E2,E1}=> Q))%I
  (at level 99, E1, E2 at level 50, Q at level 200,
   format "|={ E1 , E2 }▷=>  Q") : uPred_scope.
196
Notation "P ={ E1 , E2 }▷=∗ Q" := (P - |={ E1 , E2 }=> Q)%I
197
  (at level 99, E1, E2 at level 50, Q at level 200,
198
   format "P  ={ E1 , E2 }▷=∗  Q") : uPred_scope.
199
200
201
Notation "|={ E }▷=> Q" := (|={E,E}=> Q)%I
  (at level 99, E at level 50, Q at level 200,
   format "|={ E }▷=>  Q") : uPred_scope.
202
Notation "P ={ E }▷=∗ Q" := (P ={E,E}= Q)%I
203
  (at level 99, E at level 50, Q at level 200,
204
   format "P  ={ E }▷=∗  Q") : uPred_scope.
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

Section step_fupd.
Context `{invG Σ}.

Lemma step_fupd_mask_frame_r E1 E2 Ef P :
  E1  Ef  E2  Ef  (|={E1,E2}=> P)  |={E1  Ef,E2  Ef}=> P.
Proof.
  iIntros (??) "HP". iApply fupd_mask_frame_r. done. iMod "HP". iModIntro.
  iNext. by iApply fupd_mask_frame_r.
Qed.

Lemma step_fupd_mask_mono E1 E2 F1 F2 P :
  F1  F2  E1  E2  (|={E1,F2}=> P)  |={E2,F1}=> P.
Proof.
  iIntros (??) "HP".
  iAssert (|={E2,E1}=> True)%I as "HE".
  { iApply fupd_mono. apply later_intro. by iApply fupd_intro_mask. }
  iAssert (|={F2,F1}=> True)%I as "HF".
  { iApply fupd_mono. apply later_intro. by iApply fupd_intro_mask. }
  iMod "HE". iMod "HP". iMod "HF". iModIntro. iNext. iMod "HF". iMod "HP". by iMod "HE".
Qed.

End step_fupd.