notation.v 7.26 KB
Newer Older
1
2
From iris.program_logic Require Import language.
From iris.heap_lang Require Export lang tactics.
3
Set Default Proof Using "Type".
4

5
6
Delimit Scope expr_scope with E.
Delimit Scope val_scope with V.
7

8
Coercion LitInt : Z >-> base_lit.
9
Coercion LitBool : bool >-> base_lit.
10
11
Coercion LitLoc : loc >-> base_lit.

12
13
14
Coercion App : expr >-> Funclass.
Coercion of_val : val >-> expr.

15
16
Coercion Var : string >-> expr.

17
Coercion BNamed : string >-> binder.
18
Notation "<>" := BAnon : binder_scope.
19

20
21
(* No scope for the values, does not conflict and scope is often not inferred
properly. *)
22
23
Notation "# l" := (LitV l%Z%V) (at level 8, format "# l").
Notation "# l" := (Lit l%Z%V) (at level 8, format "# l") : expr_scope.
24

25
26
27
(** Syntax inspired by Coq/Ocaml. Constructions with higher precedence come
    first. *)
Notation "( e1 , e2 , .. , en )" := (Pair .. (Pair e1 e2) .. en) : expr_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
28
Notation "( e1 , e2 , .. , en )" := (PairV .. (PairV e1 e2) .. en) : val_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

(*
Using the '[hv' ']' printing box, we make sure that when the notation for match
does not fit on a single line, line breaks will be inserted for *each* breaking
point '/'. Note that after each breaking point /, one can put n spaces (for
example '/  '). That way, when the breaking point is turned into a line break,
indentation of n spaces will appear after the line break. As such, when the
match does not fit on one line, it will print it like:

  match: e0 with
    InjL x1 => e1
  | InjR x2 => e2
  end

Moreover, if the branches do not fit on a single line, it will be printed as:

  match: e0 with
    InjL x1 =>
    lots of stuff bla bla bla bla bla bla bla bla
  | InjR x2 =>
    even more stuff bla bla bla bla bla bla bla bla
  end
*)
52
Notation "'match:' e0 'with' 'InjL' x1 => e1 | 'InjR' x2 => e2 'end'" :=
Ralf Jung's avatar
Ralf Jung committed
53
  (Match e0 x1%bind e1 x2%bind e2)
54
  (e0, x1, e1, x2, e2 at level 200,
Robbert Krebbers's avatar
Robbert Krebbers committed
55
   format "'[hv' 'match:'  e0  'with'  '/  ' '[' 'InjL'  x1  =>  '/  ' e1 ']'  '/' '[' |  'InjR'  x2  =>  '/  ' e2 ']'  '/' 'end' ']'") : expr_scope.
56
Notation "'match:' e0 'with' 'InjR' x1 => e1 | 'InjL' x2 => e2 'end'" :=
Ralf Jung's avatar
Ralf Jung committed
57
  (Match e0 x2%bind e2 x1%bind e1)
Ralf Jung's avatar
Ralf Jung committed
58
  (e0, x1, e1, x2, e2 at level 200, only parsing) : expr_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
59

60
Notation "()" := LitUnit : val_scope.
61
62
63
Notation "! e" := (Load e%E) (at level 9, right associativity) : expr_scope.
Notation "'ref' e" := (Alloc e%E)
  (at level 30, right associativity) : expr_scope.
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
Notation "- e" := (UnOp MinusUnOp e%E) : expr_scope.

Notation "e1 + e2" := (BinOp PlusOp e1%E e2%E) : expr_scope.
Notation "e1 - e2" := (BinOp MinusOp e1%E e2%E) : expr_scope.
Notation "e1 * e2" := (BinOp MultOp e1%E e2%E) : expr_scope.
Notation "e1 `quot` e2" := (BinOp QuotOp e1%E e2%E) : expr_scope.
Notation "e1 `rem` e2" := (BinOp RemOp e1%E e2%E) : expr_scope.
Notation "e1 ≪ e2" := (BinOp ShiftLOp e1%E e2%E) : expr_scope.
Notation "e1 ≫ e2" := (BinOp ShiftROp e1%E e2%E) : expr_scope.

Notation "e1 ≤ e2" := (BinOp LeOp e1%E e2%E) : expr_scope.
Notation "e1 < e2" := (BinOp LtOp e1%E e2%E) : expr_scope.
Notation "e1 = e2" := (BinOp EqOp e1%E e2%E) : expr_scope.
Notation "e1 ≠ e2" := (UnOp NegOp (BinOp EqOp e1%E e2%E)) : expr_scope.

79
Notation "~ e" := (UnOp NegOp e%E) (at level 75, right associativity) : expr_scope.
80
(* The unicode ← is already part of the notation "_ ← _; _" for bind. *)
81
Notation "e1 <- e2" := (Store e1%E e2%E) (at level 80) : expr_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
82
83
84

(* The breaking point '/  ' makes sure that the body of the rec is indented
by two spaces in case the whole rec does not fit on a single line. *)
Ralf Jung's avatar
Ralf Jung committed
85
Notation "'rec:' f x := e" := (Rec f%bind x%bind e%E)
86
  (at level 200, f at level 1, x at level 1, e at level 200,
Robbert Krebbers's avatar
Robbert Krebbers committed
87
   format "'[' 'rec:'  f  x  :=  '/  ' e ']'") : expr_scope.
88
Notation "'rec:' f x := e" := (locked (RecV f%bind x%bind e%E))
89
  (at level 200, f at level 1, x at level 1, e at level 200,
Robbert Krebbers's avatar
Robbert Krebbers committed
90
   format "'[' 'rec:'  f  x  :=  '/  ' e ']'") : val_scope.
91
92
Notation "'if:' e1 'then' e2 'else' e3" := (If e1%E e2%E e3%E)
  (at level 200, e1, e2, e3 at level 200) : expr_scope.
93
94
95
96
97

(** Derived notions, in order of declaration. The notations for let and seq
are stated explicitly instead of relying on the Notations Let and Seq as
defined above. This is needed because App is now a coercion, and these
notations are otherwise not pretty printed back accordingly. *)
Ralf Jung's avatar
Ralf Jung committed
98
Notation "'rec:' f x y .. z := e" := (Rec f%bind x%bind (Lam y%bind .. (Lam z%bind e%E) ..))
99
  (at level 200, f, x, y, z at level 1, e at level 200,
Robbert Krebbers's avatar
Robbert Krebbers committed
100
   format "'[' 'rec:'  f  x  y  ..  z  :=  '/  ' e ']'") : expr_scope.
101
Notation "'rec:' f x y .. z := e" := (locked (RecV f%bind x%bind (Lam y%bind .. (Lam z%bind e%E) ..)))
102
  (at level 200, f, x, y, z at level 1, e at level 200,
Robbert Krebbers's avatar
Robbert Krebbers committed
103
   format "'[' 'rec:'  f  x  y  ..  z  :=  '/  ' e ']'") : val_scope.
104

Robbert Krebbers's avatar
Robbert Krebbers committed
105
106
(* The breaking point '/  ' makes sure that the body of the λ: is indented
by two spaces in case the whole λ: does not fit on a single line. *)
Ralf Jung's avatar
Ralf Jung committed
107
Notation "λ: x , e" := (Lam x%bind e%E)
108
  (at level 200, x at level 1, e at level 200,
Robbert Krebbers's avatar
Robbert Krebbers committed
109
   format "'[' 'λ:'  x ,  '/  ' e ']'") : expr_scope.
Ralf Jung's avatar
Ralf Jung committed
110
Notation "λ: x y .. z , e" := (Lam x%bind (Lam y%bind .. (Lam z%bind e%E) ..))
111
  (at level 200, x, y, z at level 1, e at level 200,
Robbert Krebbers's avatar
Robbert Krebbers committed
112
113
114
115
116
117
118
119
120
   format "'[' 'λ:'  x  y  ..  z ,  '/  ' e ']'") : expr_scope.

(* When parsing lambdas, we want them to be locked (so as to avoid needless
unfolding by tactics and unification). However, unlocked lambda-values sometimes
appear as part of compound expressions, in which case we want them to be pretty
printed too. We achieve that by first defining the non-locked notation, and then
the locked notation. Both will be used for pretty-printing, but only the last
will be used for parsing. *)
Notation "λ: x , e" := (LamV x%bind e%E)
121
  (at level 200, x at level 1, e at level 200,
Robbert Krebbers's avatar
Robbert Krebbers committed
122
   format "'[' 'λ:'  x ,  '/  ' e ']'") : val_scope.
123
Notation "λ: x , e" := (locked (LamV x%bind e%E))
124
  (at level 200, x at level 1, e at level 200,
Robbert Krebbers's avatar
Robbert Krebbers committed
125
126
   format "'[' 'λ:'  x ,  '/  ' e ']'") : val_scope.
Notation "λ: x y .. z , e" := (LamV x%bind (Lam y%bind .. (Lam z%bind e%E) .. ))
127
  (at level 200, x, y, z at level 1, e at level 200,
Robbert Krebbers's avatar
Robbert Krebbers committed
128
   format "'[' 'λ:'  x  y  ..  z ,  '/  ' e ']'") : val_scope.
129
Notation "λ: x y .. z , e" := (locked (LamV x%bind (Lam y%bind .. (Lam z%bind e%E) .. )))
130
  (at level 200, x, y, z at level 1, e at level 200,
Robbert Krebbers's avatar
Robbert Krebbers committed
131
132
   format "'[' 'λ:'  x  y  ..  z ,  '/  ' e ']'") : val_scope.

Ralf Jung's avatar
Ralf Jung committed
133
Notation "'let:' x := e1 'in' e2" := (Lam x%bind e2%E e1%E)
134
  (at level 200, x at level 1, e1, e2 at level 200,
Robbert Krebbers's avatar
Robbert Krebbers committed
135
   format "'[' 'let:'  x  :=  '[' e1 ']'  'in'  '/' e2 ']'") : expr_scope.
136
Notation "e1 ;; e2" := (Lam BAnon e2%E e1%E)
137
138
139
  (at level 100, e2 at level 200,
   format "'[' '[hv' '[' e1 ']'  ;;  ']' '/' e2 ']'") : expr_scope.

140
(* Shortcircuit Boolean connectives *)
141
Notation "e1 && e2" :=
Robbert Krebbers's avatar
Oops.    
Robbert Krebbers committed
142
  (If e1%E e2%E (Lit (LitBool false))) (only parsing) : expr_scope.
143
Notation "e1 || e2" :=
Robbert Krebbers's avatar
Oops.    
Robbert Krebbers committed
144
  (If e1%E (Lit (LitBool true)) e2%E) (only parsing) : expr_scope.
145

146
(** Notations for option *)
147
148
149
150
151
152
Notation NONE := (InjL (Lit LitUnit)) (only parsing).
Notation SOME x := (InjR x) (only parsing).

Notation NONEV := (InjLV (LitV LitUnit)) (only parsing).
Notation SOMEV x := (InjRV x) (only parsing).

153
154
Notation "'match:' e0 'with' 'NONE' => e1 | 'SOME' x => e2 'end'" :=
  (Match e0 BAnon e1 x%bind e2)
155
  (e0, e1, x, e2 at level 200, only parsing) : expr_scope.
156
Notation "'match:' e0 'with' 'SOME' x => e2 | 'NONE' => e1 'end'" :=
157
158
  (Match e0 BAnon e1 x%bind e2)
  (e0, e1, x, e2 at level 200, only parsing) : expr_scope.