lang.v 19.4 KB
Newer Older
1
From iris.program_logic Require Export language ectx_language ectxi_language.
2
From iris.algebra Require Export ofe.
Ralf Jung's avatar
Ralf Jung committed
3 4
From stdpp Require Export strings.
From stdpp Require Import gmap.
5
Set Default Proof Using "Type".
6

7
Module heap_lang.
8 9
Open Scope Z_scope.

10
(** Expressions and vals. *)
11
Definition loc := positive. (* Really, any countable type. *)
Ralf Jung's avatar
Ralf Jung committed
12

13
Inductive base_lit : Set :=
14
  | LitInt (n : Z) | LitBool (b : bool) | LitUnit | LitLoc (l : loc).
15
Inductive un_op : Set :=
16
  | NegOp | MinusUnOp.
17
Inductive bin_op : Set :=
18 19 20 21
  | PlusOp | MinusOp | MultOp | QuotOp | RemOp (* Arithmetic *)
  | AndOp | OrOp | XorOp (* Bitwise *)
  | ShiftLOp | ShiftROp (* Shifts *)
  | LeOp | LtOp | EqOp. (* Relations *)
22

23
Inductive binder := BAnon | BNamed : string  binder.
Ralf Jung's avatar
Ralf Jung committed
24 25
Delimit Scope binder_scope with bind.
Bind Scope binder_scope with binder.
26 27 28
Definition cons_binder (mx : binder) (X : list string) : list string :=
  match mx with BAnon => X | BNamed x => x :: X end.
Infix ":b:" := cons_binder (at level 60, right associativity).
29
Instance binder_eq_dec_eq : EqDecision binder.
30 31 32 33 34 35 36 37 38
Proof. solve_decision. Defined.

Instance set_unfold_cons_binder x mx X P :
  SetUnfold (x  X) P  SetUnfold (x  mx :b: X) (BNamed x = mx  P).
Proof.
  constructor. rewrite -(set_unfold (x  X) P).
  destruct mx; rewrite /= ?elem_of_cons; naive_solver.
Qed.

39
Inductive expr :=
40
  (* Base lambda calculus *)
41 42 43
  | Var (x : string)
  | Rec (f x : binder) (e : expr)
  | App (e1 e2 : expr)
44 45
  (* Base types and their operations *)
  | Lit (l : base_lit)
46 47 48
  | UnOp (op : un_op) (e : expr)
  | BinOp (op : bin_op) (e1 e2 : expr)
  | If (e0 e1 e2 : expr)
49
  (* Products *)
50 51 52
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
53
  (* Sums *)
54 55 56
  | InjL (e : expr)
  | InjR (e : expr)
  | Case (e0 : expr) (e1 : expr) (e2 : expr)
57
  (* Concurrency *)
58
  | Fork (e : expr)
59
  (* Heap *)
60 61 62
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
63 64
  | CAS (e0 : expr) (e1 : expr) (e2 : expr)
  | FAA (e1 : expr) (e2 : expr).
Ralf Jung's avatar
Ralf Jung committed
65

66
Bind Scope expr_scope with expr.
67 68 69 70 71 72 73 74

Fixpoint is_closed (X : list string) (e : expr) : bool :=
  match e with
  | Var x => bool_decide (x  X)
  | Rec f x e => is_closed (f :b: x :b: X) e
  | Lit _ => true
  | UnOp _ e | Fst e | Snd e | InjL e | InjR e | Fork e | Alloc e | Load e =>
     is_closed X e
75
  | App e1 e2 | BinOp _ e1 e2 | Pair e1 e2 | Store e1 e2 | FAA e1 e2 =>
76 77 78 79 80
     is_closed X e1 && is_closed X e2
  | If e0 e1 e2 | Case e0 e1 e2 | CAS e0 e1 e2 =>
     is_closed X e0 && is_closed X e1 && is_closed X e2
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
81
Class Closed (X : list string) (e : expr) := closed : is_closed X e.
82
Instance closed_proof_irrel X e : ProofIrrel (Closed X e).
83
Proof. rewrite /Closed. apply _. Qed.
84 85
Instance closed_dec X e : Decision (Closed X e).
Proof. rewrite /Closed. apply _. Defined.
86

87
Inductive val :=
88
  | RecV (f x : binder) (e : expr) `{!Closed (f :b: x :b: []) e}
89
  | LitV (l : base_lit)
90 91
  | PairV (v1 v2 : val)
  | InjLV (v : val)
92
  | InjRV (v : val).
Ralf Jung's avatar
Ralf Jung committed
93

94
Bind Scope val_scope with val.
95

96
Fixpoint of_val (v : val) : expr :=
Ralf Jung's avatar
Ralf Jung committed
97
  match v with
98
  | RecV f x e => Rec f x e
99
  | LitV l => Lit l
100 101 102
  | PairV v1 v2 => Pair (of_val v1) (of_val v2)
  | InjLV v => InjL (of_val v)
  | InjRV v => InjR (of_val v)
Ralf Jung's avatar
Ralf Jung committed
103
  end.
104

105
Fixpoint to_val (e : expr) : option val :=
106
  match e with
107 108
  | Rec f x e =>
     if decide (Closed (f :b: x :b: []) e) then Some (RecV f x e) else None
109
  | Lit l => Some (LitV l)
110 111 112
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
Ralf Jung's avatar
Ralf Jung committed
113
  | _ => None
114 115
  end.

116 117
(** The state: heaps of vals. *)
Definition state := gmap loc val.
Ralf Jung's avatar
Ralf Jung committed
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132
(** Equality and other typeclass stuff *)
Lemma to_of_val v : to_val (of_val v) = Some v.
Proof.
  by induction v; simplify_option_eq; repeat f_equal; try apply (proof_irrel _).
Qed.

Lemma of_to_val e v : to_val e = Some v  of_val v = e.
Proof.
  revert v; induction e; intros v ?; simplify_option_eq; auto with f_equal.
Qed.

Instance of_val_inj : Inj (=) (=) of_val.
Proof. by intros ?? Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed.

133
Instance base_lit_eq_dec : EqDecision base_lit.
134
Proof. solve_decision. Defined.
135
Instance un_op_eq_dec : EqDecision un_op.
136
Proof. solve_decision. Defined.
137
Instance bin_op_eq_dec : EqDecision bin_op.
138
Proof. solve_decision. Defined.
139
Instance expr_eq_dec : EqDecision expr.
140
Proof. solve_decision. Defined.
141
Instance val_eq_dec : EqDecision val.
142
Proof.
143
 refine (λ v v', cast_if (decide (of_val v = of_val v'))); abstract naive_solver.
144 145
Defined.

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
Instance base_lit_countable : Countable base_lit.
Proof.
 refine (inj_countable' (λ l, match l with
  | LitInt n => inl (inl n) | LitBool b => inl (inr b)
  | LitUnit => inr (inl ()) | LitLoc l => inr (inr l)
  end) (λ l, match l with
  | inl (inl n) => LitInt n | inl (inr b) => LitBool b
  | inr (inl ()) => LitUnit | inr (inr l) => LitLoc l
  end) _); by intros [].
Qed.
Instance un_op_finite : Countable un_op.
Proof.
 refine (inj_countable' (λ op, match op with NegOp => 0 | MinusUnOp => 1 end)
  (λ n, match n with 0 => NegOp | _ => MinusUnOp end) _); by intros [].
Qed.
Instance bin_op_countable : Countable bin_op.
Proof.
 refine (inj_countable' (λ op, match op with
164 165 166
  | PlusOp => 0 | MinusOp => 1 | MultOp => 2 | QuotOp => 3 | RemOp => 4
  | AndOp => 5 | OrOp => 6 | XorOp => 7 | ShiftLOp => 8 | ShiftROp => 9
  | LeOp => 10 | LtOp => 11 | EqOp => 12
167
  end) (λ n, match n with
168 169 170
  | 0 => PlusOp | 1 => MinusOp | 2 => MultOp | 3 => QuotOp | 4 => RemOp
  | 5 => AndOp | 6 => OrOp | 7 => XorOp | 8 => ShiftLOp | 9 => ShiftROp
  | 10 => LeOp | 11 => LtOp | _ => EqOp
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  end) _); by intros [].
Qed.
Instance binder_countable : Countable binder.
Proof.
 refine (inj_countable' (λ b, match b with BNamed s => Some s | BAnon => None end)
  (λ b, match b with Some s => BNamed s | None => BAnon end) _); by intros [].
Qed.
Instance expr_countable : Countable expr.
Proof.
 set (enc := fix go e :=
  match e with
  | Var x => GenLeaf (inl (inl x))
  | Rec f x e => GenNode 0 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); go e]
  | App e1 e2 => GenNode 1 [go e1; go e2]
  | Lit l => GenLeaf (inr (inl l))
  | UnOp op e => GenNode 2 [GenLeaf (inr (inr (inl op))); go e]
  | BinOp op e1 e2 => GenNode 3 [GenLeaf (inr (inr (inr op))); go e1; go e2]
  | If e0 e1 e2 => GenNode 4 [go e0; go e1; go e2]
  | Pair e1 e2 => GenNode 5 [go e1; go e2]
  | Fst e => GenNode 6 [go e]
  | Snd e => GenNode 7 [go e]
  | InjL e => GenNode 8 [go e]
  | InjR e => GenNode 9 [go e]
  | Case e0 e1 e2 => GenNode 10 [go e0; go e1; go e2]
  | Fork e => GenNode 11 [go e]
  | Alloc e => GenNode 12 [go e]
  | Load e => GenNode 13 [go e]
  | Store e1 e2 => GenNode 14 [go e1; go e2]
  | CAS e0 e1 e2 => GenNode 15 [go e0; go e1; go e2]
200
  | FAA e1 e2 => GenNode 16 [go e1; go e2]
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  end).
 set (dec := fix go e :=
  match e with
  | GenLeaf (inl (inl x)) => Var x
  | GenNode 0 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); e] => Rec f x (go e)
  | GenNode 1 [e1; e2] => App (go e1) (go e2)
  | GenLeaf (inr (inl l)) => Lit l
  | GenNode 2 [GenLeaf (inr (inr (inl op))); e] => UnOp op (go e)
  | GenNode 3 [GenLeaf (inr (inr (inr op))); e1; e2] => BinOp op (go e1) (go e2)
  | GenNode 4 [e0; e1; e2] => If (go e0) (go e1) (go e2)
  | GenNode 5 [e1; e2] => Pair (go e1) (go e2)
  | GenNode 6 [e] => Fst (go e)
  | GenNode 7 [e] => Snd (go e)
  | GenNode 8 [e] => InjL (go e)
  | GenNode 9 [e] => InjR (go e)
  | GenNode 10 [e0; e1; e2] => Case (go e0) (go e1) (go e2)
  | GenNode 11 [e] => Fork (go e)
  | GenNode 12 [e] => Alloc (go e)
  | GenNode 13 [e] => Load (go e)
  | GenNode 14 [e1; e2] => Store (go e1) (go e2)
  | GenNode 15 [e0; e1; e2] => CAS (go e0) (go e1) (go e2)
222
  | GenNode 16 [e1; e2] => FAA (go e1) (go e2)
223 224 225 226 227 228 229
  | _ => Lit LitUnit (* dummy *)
  end).
 refine (inj_countable' enc dec _). intros e. induction e; f_equal/=; auto.
Qed.
Instance val_countable : Countable val.
Proof. refine (inj_countable of_val to_val _); auto using to_of_val. Qed.

230 231 232 233 234 235 236
Instance expr_inhabited : Inhabited expr := populate (Lit LitUnit).
Instance val_inhabited : Inhabited val := populate (LitV LitUnit).

Canonical Structure stateC := leibnizC state.
Canonical Structure valC := leibnizC val.
Canonical Structure exprC := leibnizC expr.

237
(** Evaluation contexts *)
238
Inductive ectx_item :=
239
  | AppLCtx (e2 : expr)
240
  | AppRCtx (v1 : val)
241
  | UnOpCtx (op : un_op)
242
  | BinOpLCtx (op : bin_op) (e2 : expr)
243
  | BinOpRCtx (op : bin_op) (v1 : val)
244 245
  | IfCtx (e1 e2 : expr)
  | PairLCtx (e2 : expr)
246 247 248 249 250
  | PairRCtx (v1 : val)
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
251
  | CaseCtx (e1 : expr) (e2 : expr)
252 253
  | AllocCtx
  | LoadCtx
254
  | StoreLCtx (e2 : expr)
255
  | StoreRCtx (v1 : val)
256
  | CasLCtx (e1 : expr) (e2 : expr)
257
  | CasMCtx (v0 : val) (e2 : expr)
258 259 260
  | CasRCtx (v0 : val) (v1 : val)
  | FaaLCtx (e2 : expr)
  | FaaRCtx (v1 : val).
261

262
Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
263 264 265
  match Ki with
  | AppLCtx e2 => App e e2
  | AppRCtx v1 => App (of_val v1) e
266 267 268 269
  | UnOpCtx op => UnOp op e
  | BinOpLCtx op e2 => BinOp op e e2
  | BinOpRCtx op v1 => BinOp op (of_val v1) e
  | IfCtx e1 e2 => If e e1 e2
270 271 272 273 274 275
  | PairLCtx e2 => Pair e e2
  | PairRCtx v1 => Pair (of_val v1) e
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
276
  | CaseCtx e1 e2 => Case e e1 e2
277 278
  | AllocCtx => Alloc e
  | LoadCtx => Load e
279
  | StoreLCtx e2 => Store e e2 
280
  | StoreRCtx v1 => Store (of_val v1) e
281 282 283
  | CasLCtx e1 e2 => CAS e e1 e2
  | CasMCtx v0 e2 => CAS (of_val v0) e e2
  | CasRCtx v0 v1 => CAS (of_val v0) (of_val v1) e
284 285
  | FaaLCtx e2 => FAA e e2
  | FaaRCtx v1 => FAA (of_val v1) e
Ralf Jung's avatar
Ralf Jung committed
286 287
  end.

288
(** Substitution *)
289 290 291
Fixpoint subst (x : string) (es : expr) (e : expr)  : expr :=
  match e with
  | Var y => if decide (x = y) then es else Var y
292
  | Rec f y e =>
293 294
     Rec f y $ if decide (BNamed x  f  BNamed x  y) then subst x es e else e
  | App e1 e2 => App (subst x es e1) (subst x es e2)
295
  | Lit l => Lit l
296 297 298 299 300 301 302 303 304 305 306 307 308 309
  | UnOp op e => UnOp op (subst x es e)
  | BinOp op e1 e2 => BinOp op (subst x es e1) (subst x es e2)
  | If e0 e1 e2 => If (subst x es e0) (subst x es e1) (subst x es e2)
  | Pair e1 e2 => Pair (subst x es e1) (subst x es e2)
  | Fst e => Fst (subst x es e)
  | Snd e => Snd (subst x es e)
  | InjL e => InjL (subst x es e)
  | InjR e => InjR (subst x es e)
  | Case e0 e1 e2 => Case (subst x es e0) (subst x es e1) (subst x es e2)
  | Fork e => Fork (subst x es e)
  | Alloc e => Alloc (subst x es e)
  | Load e => Load (subst x es e)
  | Store e1 e2 => Store (subst x es e1) (subst x es e2)
  | CAS e0 e1 e2 => CAS (subst x es e0) (subst x es e1) (subst x es e2)
310
  | FAA e1 e2 => FAA (subst x es e1) (subst x es e2)
311
  end.
312

313
Definition subst' (mx : binder) (es : expr) : expr  expr :=
314
  match mx with BNamed x => subst x es | BAnon => id end.
315

316
(** The stepping relation *)
317 318 319
Definition un_op_eval (op : un_op) (v : val) : option val :=
  match op, v with
  | NegOp, LitV (LitBool b) => Some $ LitV $ LitBool (negb b)
320
  | NegOp, LitV (LitInt n) => Some $ LitV $ LitInt (Z.lnot n)
321
  | MinusUnOp, LitV (LitInt n) => Some $ LitV $ LitInt (- n)
322 323 324
  | _, _ => None
  end.

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
Definition bin_op_eval_int (op : bin_op) (n1 n2 : Z) : base_lit :=
  match op with
  | PlusOp => LitInt (n1 + n2)
  | MinusOp => LitInt (n1 - n2)
  | MultOp => LitInt (n1 * n2)
  | QuotOp => LitInt (n1 `quot` n2)
  | RemOp => LitInt (n1 `rem` n2)
  | AndOp => LitInt (Z.land n1 n2)
  | OrOp => LitInt (Z.lor n1 n2)
  | XorOp => LitInt (Z.lxor n1 n2)
  | ShiftLOp => LitInt (n1  n2)
  | ShiftROp => LitInt (n1  n2)
  | LeOp => LitBool (bool_decide (n1  n2))
  | LtOp => LitBool (bool_decide (n1 < n2))
  | EqOp => LitBool (bool_decide (n1 = n2))
  end.

Definition bin_op_eval_bool (op : bin_op) (b1 b2 : bool) : option base_lit :=
  match op with
  | PlusOp | MinusOp | MultOp | QuotOp | RemOp => None (* Arithmetic *)
  | AndOp => Some (LitBool (b1 && b2))
  | OrOp => Some (LitBool (b1 || b2))
  | XorOp => Some (LitBool (xorb b1 b2))
  | ShiftLOp | ShiftROp => None (* Shifts *)
  | LeOp | LtOp => None (* InEquality *)
  | EqOp => Some (LitBool (bool_decide (b1 = b2)))
  end.

353
Definition bin_op_eval (op : bin_op) (v1 v2 : val) : option val :=
354 355 356 357
  match v1, v2 with
  | LitV (LitInt n1), LitV (LitInt n2) => Some $ LitV $ bin_op_eval_int op n1 n2
  | LitV (LitBool b1), LitV (LitBool b2) => LitV <$> bin_op_eval_bool op b1 b2
  | v1, v2 => guard (op = EqOp); Some $ LitV $ LitBool $ bool_decide (v1 = v2)
358 359
  end.

360
Inductive head_step : expr  state  expr  state  list (expr)  Prop :=
361
  | BetaS f x e1 e2 v2 e' σ :
362
     to_val e2 = Some v2 
363
     Closed (f :b: x :b: []) e1 
364
     e' = subst' x (of_val v2) (subst' f (Rec f x e1) e1) 
365
     head_step (App (Rec f x e1) e2) σ e' σ []
366 367 368 369 370 371 372 373
  | UnOpS op e v v' σ :
     to_val e = Some v 
     un_op_eval op v = Some v'  
     head_step (UnOp op e) σ (of_val v') σ []
  | BinOpS op e1 e2 v1 v2 v' σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     bin_op_eval op v1 v2 = Some v'  
     head_step (BinOp op e1 e2) σ (of_val v') σ []
374
  | IfTrueS e1 e2 σ :
375
     head_step (If (Lit $ LitBool true) e1 e2) σ e1 σ []
376
  | IfFalseS e1 e2 σ :
377
     head_step (If (Lit $ LitBool false) e1 e2) σ e2 σ []
378 379
  | FstS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
380
     head_step (Fst (Pair e1 e2)) σ e1 σ []
381 382
  | SndS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
383
     head_step (Snd (Pair e1 e2)) σ e2 σ []
384
  | CaseLS e0 v0 e1 e2 σ :
385
     to_val e0 = Some v0 
386
     head_step (Case (InjL e0) e1 e2) σ (App e1 e0) σ []
387
  | CaseRS e0 v0 e1 e2 σ :
388
     to_val e0 = Some v0 
389
     head_step (Case (InjR e0) e1 e2) σ (App e2 e0) σ []
390
  | ForkS e σ:
391
     head_step (Fork e) σ (Lit LitUnit) σ [e]
392 393
  | AllocS e v σ l :
     to_val e = Some v  σ !! l = None 
394
     head_step (Alloc e) σ (Lit $ LitLoc l) (<[l:=v]>σ) []
395 396
  | LoadS l v σ :
     σ !! l = Some v 
397
     head_step (Load (Lit $ LitLoc l)) σ (of_val v) σ []
398 399
  | StoreS l e v σ :
     to_val e = Some v  is_Some (σ !! l) 
400
     head_step (Store (Lit $ LitLoc l) e) σ (Lit LitUnit) (<[l:=v]>σ) []
401 402 403
  | CasFailS l e1 v1 e2 v2 vl σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some vl  vl  v1 
404
     head_step (CAS (Lit $ LitLoc l) e1 e2) σ (Lit $ LitBool false) σ []
405 406 407
  | CasSucS l e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some v1 
408 409 410 411 412 413
     head_step (CAS (Lit $ LitLoc l) e1 e2) σ (Lit $ LitBool true) (<[l:=v2]>σ) []
   | FaaS l i1 e2 i2 σ :
     to_val e2 = Some (LitV (LitInt i2)) 
     σ !! l = Some (LitV (LitInt i1)) 
     head_step (FAA (Lit $ LitLoc l) e2) σ (Lit $ LitInt i1) (<[l:=LitV (LitInt (i1 + i2))]>σ) [].

Ralf Jung's avatar
Ralf Jung committed
414

415
(** Basic properties about the language *)
416
Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki).
417
Proof. destruct Ki; intros ???; simplify_eq/=; auto with f_equal. Qed.
418

419 420 421
Lemma fill_item_val Ki e :
  is_Some (to_val (fill_item Ki e))  is_Some (to_val e).
Proof. intros [v ?]. destruct Ki; simplify_option_eq; eauto. Qed.
422

423
Lemma val_head_stuck e1 σ1 e2 σ2 efs : head_step e1 σ1 e2 σ2 efs  to_val e1 = None.
424
Proof. destruct 1; naive_solver. Qed.
425

426 427
Lemma head_ctx_step_val Ki e σ1 e2 σ2 efs :
  head_step (fill_item Ki e) σ1 e2 σ2 efs  is_Some (to_val e).
428
Proof. destruct Ki; inversion_clear 1; simplify_option_eq; by eauto. Qed.
429

430
Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
431
  to_val e1 = None  to_val e2 = None 
432
  fill_item Ki1 e1 = fill_item Ki2 e2  Ki1 = Ki2.
433
Proof.
434
  destruct Ki1, Ki2; intros; try discriminate; simplify_eq/=;
435
    repeat match goal with
436 437
    | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H
    end; auto.
Ralf Jung's avatar
Ralf Jung committed
438
Qed.
439

440
Lemma alloc_fresh e v σ :
441
  let l := fresh (dom (gset loc) σ) in
442
  to_val e = Some v  head_step (Alloc e) σ (Lit (LitLoc l)) (<[l:=v]>σ) [].
Robbert Krebbers's avatar
Robbert Krebbers committed
443
Proof. by intros; apply AllocS, (not_elem_of_dom (D:=gset loc)), is_fresh. Qed.
444

445 446 447 448 449
(* Misc *)
Lemma to_val_rec f x e `{!Closed (f :b: x :b: []) e} :
  to_val (Rec f x e) = Some (RecV f x e).
Proof. rewrite /to_val. case_decide=> //. do 2 f_equal; apply proof_irrel. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
450
(** Closed expressions *)
451
Lemma is_closed_weaken X Y e : is_closed X e  X  Y  is_closed Y e.
Robbert Krebbers's avatar
Robbert Krebbers committed
452 453
Proof. revert X Y; induction e; naive_solver (eauto; set_solver). Qed.

454
Lemma is_closed_weaken_nil X e : is_closed [] e  is_closed X e.
455
Proof. intros. by apply is_closed_weaken with [], list_subseteq_nil. Qed.
456

457 458 459
Lemma is_closed_of_val X v : is_closed X (of_val v).
Proof. apply is_closed_weaken_nil. induction v; simpl; auto. Qed.

460
Lemma is_closed_to_val X e v : to_val e = Some v  is_closed X e.
Robbert Krebbers's avatar
Robbert Krebbers committed
461
Proof. intros <-%of_to_val. apply is_closed_of_val. Qed.
462

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
Lemma is_closed_subst X e x es :
  is_closed [] es  is_closed (x :: X) e  is_closed X (subst x es e).
Proof.
  intros ?. revert X.
  induction e=> X /= ?; destruct_and?; split_and?; simplify_option_eq;
    try match goal with
    | H : ¬(_  _) |- _ => apply not_and_l in H as [?%dec_stable|?%dec_stable]
    end; eauto using is_closed_weaken with set_solver.
Qed.
Lemma is_closed_do_subst' X e x es :
  is_closed [] es  is_closed (x :b: X) e  is_closed X (subst' x es e).
Proof. destruct x; eauto using is_closed_subst. Qed.

(* Substitution *)
Lemma subst_is_closed X e x es : is_closed X e  x  X  subst x es e = e.
Robbert Krebbers's avatar
Robbert Krebbers committed
478
Proof.
479
  revert X. induction e=> X /=; rewrite ?bool_decide_spec ?andb_True=> ??;
Robbert Krebbers's avatar
Robbert Krebbers committed
480 481
    repeat case_decide; simplify_eq/=; f_equal; intuition eauto with set_solver.
Qed.
482

483 484
Lemma subst_is_closed_nil e x es : is_closed [] e  subst x es e = e.
Proof. intros. apply subst_is_closed with []; set_solver. Qed.
485

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
Lemma subst_subst e x es es' :
  Closed [] es'  subst x es (subst x es' e) = subst x es' e.
Proof.
  intros. induction e; simpl; try (f_equal; by auto);
    simplify_option_eq; auto using subst_is_closed_nil with f_equal.
Qed.
Lemma subst_subst' e x es es' :
  Closed [] es'  subst' x es (subst' x es' e) = subst' x es' e.
Proof. destruct x; simpl; auto using subst_subst. Qed.

Lemma subst_subst_ne e x y es es' :
  Closed [] es  Closed [] es'  x  y 
  subst x es (subst y es' e) = subst y es' (subst x es e).
Proof.
  intros. induction e; simpl; try (f_equal; by auto);
    simplify_option_eq; auto using eq_sym, subst_is_closed_nil with f_equal.
Qed.
Lemma subst_subst_ne' e x y es es' :
  Closed [] es  Closed [] es'  x  y 
  subst' x es (subst' y es' e) = subst' y es' (subst' x es e).
Proof. destruct x, y; simpl; auto using subst_subst_ne with congruence. Qed.

Lemma subst_rec' f y e x es :
  x = f  x = y  x = BAnon 
  subst' x es (Rec f y e) = Rec f y e.
Proof. intros. destruct x; simplify_option_eq; naive_solver. Qed.
Lemma subst_rec_ne' f y e x es :
  (x  f  f = BAnon)  (x  y  y = BAnon) 
  subst' x es (Rec f y e) = Rec f y (subst' x es e).
Proof. intros. destruct x; simplify_option_eq; naive_solver. Qed.
516 517 518 519 520 521

Lemma heap_lang_mixin : EctxiLanguageMixin of_val to_val fill_item head_step.
Proof.
  split; apply _ || eauto using to_of_val, of_to_val, val_head_stuck,
    fill_item_val, fill_item_no_val_inj, head_ctx_step_val.
Qed.
522 523 524
End heap_lang.

(** Language *)
525 526 527
Canonical Structure heap_ectxi_lang := EctxiLanguage heap_lang.heap_lang_mixin.
Canonical Structure heap_ectx_lang := EctxLanguageOfEctxi heap_ectxi_lang.
Canonical Structure heap_lang := LanguageOfEctx heap_ectx_lang.
528

529
(* Prefer heap_lang names over ectx_language names. *)
530
Export heap_lang.
531 532 533 534 535 536 537 538 539 540

(** Define some derived forms *)
Notation Lam x e := (Rec BAnon x e).
Notation Let x e1 e2 := (App (Lam x e2) e1).
Notation Seq e1 e2 := (Let BAnon e1 e2).
Notation LamV x e := (RecV BAnon x e).
Notation LetCtx x e2 := (AppRCtx (LamV x e2)).
Notation SeqCtx e2 := (LetCtx BAnon e2).
Notation Skip := (Seq (Lit LitUnit) (Lit LitUnit)).
Notation Match e0 x1 e1 x2 e2 := (Case e0 (Lam x1 e1) (Lam x2 e2)).