coPset.v 17.9 KB
Newer Older
1 2
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
3 4 5 6 7 8 9 10 11 12 13
(** This files implements the type [coPset] of efficient finite/cofinite sets
of positive binary naturals [positive]. These sets are:

- Closed under union, intersection and set complement.
- Closed under splitting of cofinite sets.

Also, they enjoy various nice properties, such as decidable equality and set
membership, as well as extensional equality (i.e. [X = Y ↔ ∀ x, x ∈ X ↔ x ∈ Y]).

Since [positive]s are bitstrings, we encode [coPset]s as trees that correspond
to the decision function that map bitstrings to bools. *)
14 15
From iris.prelude Require Export collections.
From iris.prelude Require Import pmap gmap mapset.
16 17 18 19 20 21
Local Open Scope positive_scope.

(** * The tree data structure *)
Inductive coPset_raw :=
  | coPLeaf : bool  coPset_raw
  | coPNode : bool  coPset_raw  coPset_raw  coPset_raw.
22
Instance coPset_raw_eq_dec : EqDecision coPset_raw.
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
Proof. solve_decision. Defined.

Fixpoint coPset_wf (t : coPset_raw) : bool :=
  match t with
  | coPLeaf _ => true
  | coPNode true (coPLeaf true) (coPLeaf true) => false
  | coPNode false (coPLeaf false) (coPLeaf false) => false
  | coPNode b l r => coPset_wf l && coPset_wf r
  end.
Arguments coPset_wf !_ / : simpl nomatch.

Lemma coPNode_wf_l b l r : coPset_wf (coPNode b l r)  coPset_wf l.
Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
Lemma coPNode_wf_r b l r : coPset_wf (coPNode b l r)  coPset_wf r.
Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
Local Hint Immediate coPNode_wf_l coPNode_wf_r.

Definition coPNode' (b : bool) (l r : coPset_raw) : coPset_raw :=
  match b, l, r with
  | true, coPLeaf true, coPLeaf true => coPLeaf true
  | false, coPLeaf false, coPLeaf false => coPLeaf false
  | _, _, _ => coPNode b l r
  end.
Arguments coPNode' _ _ _ : simpl never.
Lemma coPNode_wf b l r : coPset_wf l  coPset_wf r  coPset_wf (coPNode' b l r).
Proof. destruct b, l as [[]|], r as [[]|]; simpl; auto. Qed.
Hint Resolve coPNode_wf.

Fixpoint coPset_elem_of_raw (p : positive) (t : coPset_raw) {struct t} : bool :=
  match t, p with
  | coPLeaf b, _ => b
  | coPNode b l r, 1 => b
  | coPNode _ l _, p~0 => coPset_elem_of_raw p l
  | coPNode _ _ r, p~1 => coPset_elem_of_raw p r
  end.
Local Notation e_of := coPset_elem_of_raw.
Arguments coPset_elem_of_raw _ !_ / : simpl nomatch.
60
Lemma coPset_elem_of_node b l r p :
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
  e_of p (coPNode' b l r) = e_of p (coPNode b l r).
Proof. by destruct p, b, l as [[]|], r as [[]|]. Qed.

Lemma coPLeaf_wf t b : ( p, e_of p t = b)  coPset_wf t  t = coPLeaf b.
Proof.
  induction t as [b'|b' l IHl r IHr]; intros Ht ?; [f_equal; apply (Ht 1)|].
  assert (b' = b) by (apply (Ht 1)); subst.
  assert (l = coPLeaf b) as -> by (apply IHl; try apply (λ p, Ht (p~0)); eauto).
  assert (r = coPLeaf b) as -> by (apply IHr; try apply (λ p, Ht (p~1)); eauto).
  by destruct b.
Qed.
Lemma coPset_eq t1 t2 :
  ( p, e_of p t1 = e_of p t2)  coPset_wf t1  coPset_wf t2  t1 = t2.
Proof.
  revert t2.
  induction t1 as [b1|b1 l1 IHl r1 IHr]; intros [b2|b2 l2 r2] Ht ??; simpl in *.
77 78 79 80
  - f_equal; apply (Ht 1).
  - by discriminate (coPLeaf_wf (coPNode b2 l2 r2) b1).
  - by discriminate (coPLeaf_wf (coPNode b1 l1 r1) b2).
  - f_equal; [apply (Ht 1)| |].
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    + apply IHl; try apply (λ x, Ht (x~0)); eauto.
    + apply IHr; try apply (λ x, Ht (x~1)); eauto.
Qed.

Fixpoint coPset_singleton_raw (p : positive) : coPset_raw :=
  match p with
  | 1 => coPNode true (coPLeaf false) (coPLeaf false)
  | p~0 => coPNode' false (coPset_singleton_raw p) (coPLeaf false)
  | p~1 => coPNode' false (coPLeaf false) (coPset_singleton_raw p)
  end.
Instance coPset_union_raw : Union coPset_raw :=
  fix go t1 t2 := let _ : Union _ := @go in
  match t1, t2 with
  | coPLeaf false, coPLeaf false => coPLeaf false
  | _, coPLeaf true => coPLeaf true
  | coPLeaf true, _ => coPLeaf true
97 98 99
  | coPNode b l r, coPLeaf false => coPNode b l r
  | coPLeaf false, coPNode b l r => coPNode b l r
  | coPNode b1 l1 r1, coPNode b2 l2 r2 => coPNode' (b1||b2) (l1  l2) (r1  r2)
100 101 102 103 104 105 106 107
  end.
Local Arguments union _ _!_ !_ /.
Instance coPset_intersection_raw : Intersection coPset_raw :=
  fix go t1 t2 := let _ : Intersection _ := @go in
  match t1, t2 with
  | coPLeaf true, coPLeaf true => coPLeaf true
  | _, coPLeaf false => coPLeaf false
  | coPLeaf false, _ => coPLeaf false
108 109 110
  | coPNode b l r, coPLeaf true => coPNode b l r
  | coPLeaf true, coPNode b l r => coPNode b l r
  | coPNode b1 l1 r1, coPNode b2 l2 r2 => coPNode' (b1&&b2) (l1  l2) (r1  r2)
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  end.
Local Arguments intersection _ _!_ !_ /.
Fixpoint coPset_opp_raw (t : coPset_raw) : coPset_raw :=
  match t with
  | coPLeaf b => coPLeaf (negb b)
  | coPNode b l r => coPNode' (negb b) (coPset_opp_raw l) (coPset_opp_raw r)
  end.

Lemma coPset_singleton_wf p : coPset_wf (coPset_singleton_raw p).
Proof. induction p; simpl; eauto. Qed.
Lemma coPset_union_wf t1 t2 : coPset_wf t1  coPset_wf t2  coPset_wf (t1  t2).
Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
Lemma coPset_intersection_wf t1 t2 :
  coPset_wf t1  coPset_wf t2  coPset_wf (t1  t2).
Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
Lemma coPset_opp_wf t : coPset_wf (coPset_opp_raw t).
Proof. induction t as [[]|[]]; simpl; eauto. Qed.
128
Lemma elem_to_Pset_singleton p q : e_of p (coPset_singleton_raw q)  p = q.
129
Proof.
130
  split; [|by intros <-; induction p; simpl; rewrite ?coPset_elem_of_node].
131
  by revert q; induction p; intros [?|?|]; simpl;
132
    rewrite ?coPset_elem_of_node; intros; f_equal/=; auto.
133
Qed.
134
Lemma elem_to_Pset_union t1 t2 p : e_of p (t1  t2) = e_of p t1 || e_of p t2.
135 136
Proof.
  by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
137
    rewrite ?coPset_elem_of_node; simpl;
138 139
    rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r.
Qed.
140
Lemma elem_to_Pset_intersection t1 t2 p :
141 142 143
  e_of p (t1  t2) = e_of p t1 && e_of p t2.
Proof.
  by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
144
    rewrite ?coPset_elem_of_node; simpl;
145 146
    rewrite ?andb_true_l, ?andb_false_l, ?andb_true_r, ?andb_false_r.
Qed.
147
Lemma elem_to_Pset_opp t p : e_of p (coPset_opp_raw t) = negb (e_of p t).
148 149
Proof.
  by revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
150
    rewrite ?coPset_elem_of_node; simpl.
151 152 153 154 155 156 157 158 159
Qed.

(** * Packed together + set operations *)
Definition coPset := { t | coPset_wf t }.

Instance coPset_singleton : Singleton positive coPset := λ p,
  coPset_singleton_raw p  coPset_singleton_wf _.
Instance coPset_elem_of : ElemOf positive coPset := λ p X, e_of p (`X).
Instance coPset_empty : Empty coPset := coPLeaf false  I.
160
Instance coPset_top : Top coPset := coPLeaf true  I.
161
Instance coPset_union : Union coPset := λ X Y,
162 163
  let (t1,Ht1) := X in let (t2,Ht2) := Y in
  (t1  t2)  coPset_union_wf _ _ Ht1 Ht2.
164
Instance coPset_intersection : Intersection coPset := λ X Y,
165 166
  let (t1,Ht1) := X in let (t2,Ht2) := Y in
  (t1  t2)  coPset_intersection_wf _ _ Ht1 Ht2.
167
Instance coPset_difference : Difference coPset := λ X Y,
168 169
  let (t1,Ht1) := X in let (t2,Ht2) := Y in
  (t1  coPset_opp_raw t2)  coPset_intersection_wf _ _ Ht1 (coPset_opp_wf _).
170 171 172 173

Instance coPset_collection : Collection positive coPset.
Proof.
  split; [split| |].
174 175 176
  - by intros ??.
  - intros p q. apply elem_to_Pset_singleton.
  - intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_union; simpl.
177
    by rewrite elem_to_Pset_union, orb_True.
178
  - intros [t] [t'] p; unfold elem_of,coPset_elem_of,coPset_intersection; simpl.
179
    by rewrite elem_to_Pset_intersection, andb_True.
180
  - intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_difference; simpl.
181 182
    by rewrite elem_to_Pset_intersection,
      elem_to_Pset_opp, andb_True, negb_True.
183
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
184

185 186
Instance coPset_leibniz : LeibnizEquiv coPset.
Proof.
187
  intros X Y; rewrite elem_of_equiv; intros HXY.
188 189 190
  apply (sig_eq_pi _), coPset_eq; try apply proj2_sig.
  intros p; apply eq_bool_prop_intro, (HXY p).
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

Instance coPset_elem_of_dec (p : positive) (X : coPset) : Decision (p  X) := _.
Instance coPset_equiv_dec (X Y : coPset) : Decision (X  Y).
Proof. refine (cast_if (decide (X = Y))); abstract (by fold_leibniz). Defined.
Instance mapset_disjoint_dec (X Y : coPset) : Decision (X  Y).
Proof.
 refine (cast_if (decide (X  Y = )));
  abstract (by rewrite disjoint_intersection_L).
Defined.
Instance mapset_subseteq_dec (X Y : coPset) : Decision (X  Y).
Proof.
 refine (cast_if (decide (X  Y = Y))); abstract (by rewrite subseteq_union_L).
Defined.

(** * Top *)
Robbert Krebbers's avatar
Robbert Krebbers committed
206 207 208
Lemma coPset_top_subseteq (X : coPset) : X  .
Proof. done. Qed.
Hint Resolve coPset_top_subseteq.
209

210 211
(** * Finite sets *)
Fixpoint coPset_finite (t : coPset_raw) : bool :=
212
  match t with
213
  | coPLeaf b => negb b | coPNode b l r => coPset_finite l && coPset_finite r
214
  end.
215 216
Lemma coPset_finite_node b l r :
  coPset_finite (coPNode' b l r) = coPset_finite l && coPset_finite r.
217
Proof. by destruct b, l as [[]|], r as [[]|]. Qed.
218 219 220 221
Lemma coPset_finite_spec X : set_finite X  coPset_finite (`X).
Proof.
  destruct X as [t Ht].
  unfold set_finite, elem_of at 1, coPset_elem_of; simpl; clear Ht; split.
222
  - induction t as [b|b l IHl r IHr]; simpl.
223 224 225 226 227 228 229
    { destruct b; simpl; [intros [l Hl]|done].
      by apply (is_fresh (of_list l : Pset)), elem_of_of_list, Hl. }
    intros [ll Hll]; rewrite andb_True; split.
    + apply IHl; exists (omap (maybe (~0)) ll); intros i.
      rewrite elem_of_list_omap; intros; exists (i~0); auto.
    + apply IHr; exists (omap (maybe (~1)) ll); intros i.
      rewrite elem_of_list_omap; intros; exists (i~1); auto.
230
  - induction t as [b|b l IHl r IHr]; simpl; [by exists []; destruct b|].
231 232 233 234 235 236 237 238 239
    rewrite andb_True; intros [??]; destruct IHl as [ll ?], IHr as [rl ?]; auto.
    exists ([1] ++ ((~0) <$> ll) ++ ((~1) <$> rl))%list; intros [i|i|]; simpl;
      rewrite elem_of_cons, elem_of_app, !elem_of_list_fmap; naive_solver.
Qed.
Instance coPset_finite_dec (X : coPset) : Decision (set_finite X).
Proof.
  refine (cast_if (decide (coPset_finite (`X)))); by rewrite coPset_finite_spec.
Defined.

240 241 242
(** * Pick element from infinite sets *)
(* Implemented using depth-first search, which results in very unbalanced
trees. *)
243 244 245 246 247 248 249 250 251
Fixpoint coPpick_raw (t : coPset_raw) : option positive :=
  match t with
  | coPLeaf true | coPNode true _ _ => Some 1
  | coPLeaf false => None
  | coPNode false l r =>
     match coPpick_raw l with
     | Some i => Some (i~0) | None => (~1) <$> coPpick_raw r
     end
  end.
252
Definition coPpick (X : coPset) : positive := from_option id 1 (coPpick_raw (`X)).
253 254 255

Lemma coPpick_raw_elem_of t i : coPpick_raw t = Some i  e_of i t.
Proof.
256 257
  revert i; induction t as [[]|[] l ? r]; intros i ?; simplify_eq/=; auto.
  destruct (coPpick_raw l); simplify_option_eq; auto.
258 259 260
Qed.
Lemma coPpick_raw_None t : coPpick_raw t = None  coPset_finite t.
Proof.
261 262
  induction t as [[]|[] l ? r]; intros i; simplify_eq/=; auto.
  destruct (coPpick_raw l); simplify_option_eq; auto.
263 264 265 266
Qed.
Lemma coPpick_elem_of X : ¬set_finite X  coPpick X  X.
Proof.
  destruct X as [t ?]; unfold coPpick; destruct (coPpick_raw _) as [j|] eqn:?.
267 268
  - by intros; apply coPpick_raw_elem_of.
  - by intros []; apply coPset_finite_spec, coPpick_raw_None.
269 270
Qed.

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
(** * Conversion to psets *)
Fixpoint to_Pset_raw (t : coPset_raw) : Pmap_raw () :=
  match t with
  | coPLeaf _ => PLeaf
  | coPNode false l r => PNode' None (to_Pset_raw l) (to_Pset_raw r)
  | coPNode true l r => PNode (Some ()) (to_Pset_raw l) (to_Pset_raw r)
  end.
Lemma to_Pset_wf t : coPset_wf t  Pmap_wf (to_Pset_raw t).
Proof. induction t as [|[]]; simpl; eauto using PNode_wf. Qed.
Definition to_Pset (X : coPset) : Pset :=
  let (t,Ht) := X in Mapset (PMap (to_Pset_raw t) (to_Pset_wf _ Ht)).
Lemma elem_of_to_Pset X i : set_finite X  i  to_Pset X  i  X.
Proof.
  rewrite coPset_finite_spec; destruct X as [t Ht].
  change (coPset_finite t  to_Pset_raw t !! i = Some ()  e_of i t).
  clear Ht; revert i; induction t as [[]|[] l IHl r IHr]; intros [i|i|];
    simpl; rewrite ?andb_True, ?PNode_lookup; naive_solver.
Qed.

(** * Conversion from psets *)
Fixpoint of_Pset_raw (t : Pmap_raw ()) : coPset_raw :=
  match t with
  | PLeaf => coPLeaf false
  | PNode None l r => coPNode false (of_Pset_raw l) (of_Pset_raw r)
  | PNode (Some _) l r => coPNode true (of_Pset_raw l) (of_Pset_raw r)
  end.
Lemma of_Pset_wf t : Pmap_wf t  coPset_wf (of_Pset_raw t).
Proof.
  induction t as [|[] l IHl r IHr]; simpl; rewrite ?andb_True; auto.
300 301
  - intros [??]; destruct l as [|[]], r as [|[]]; simpl in *; auto.
  - destruct l as [|[]], r as [|[]]; simpl in *; rewrite ?andb_true_r;
302 303
      rewrite ?andb_True; rewrite ?andb_True in IHl, IHr; intuition.
Qed.
304 305 306 307 308
Lemma elem_of_of_Pset_raw i t : e_of i (of_Pset_raw t)  t !! i = Some ().
Proof. by revert i; induction t as [|[[]|]]; intros []; simpl; auto; split. Qed.
Lemma of_Pset_raw_finite t : coPset_finite (of_Pset_raw t).
Proof. induction t as [|[[]|]]; simpl; rewrite ?andb_True; auto. Qed.

309 310 311
Definition of_Pset (X : Pset) : coPset :=
  let 'Mapset (PMap t Ht) := X in of_Pset_raw t  of_Pset_wf _ Ht.
Lemma elem_of_of_Pset X i : i  of_Pset X  i  X.
312 313
Proof. destruct X as [[t ?]]; apply elem_of_of_Pset_raw. Qed.
Lemma of_Pset_finite X : set_finite (of_Pset X).
314
Proof.
315
  apply coPset_finite_spec; destruct X as [[t ?]]; apply of_Pset_raw_finite.
316
Qed.
317

318 319 320 321 322 323 324
(** * Conversion to and from gsets of positives *)
Lemma to_gset_wf (m : Pmap ()) : gmap_wf (K:=positive) m.
Proof. done. Qed.
Definition to_gset (X : coPset) : gset positive :=
  let 'Mapset m := to_Pset X in
  Mapset (GMap m (bool_decide_pack _ (to_gset_wf m))).

325 326
Definition of_gset (X : gset positive) : coPset :=
  let 'Mapset (GMap (PMap t Ht) _) := X in of_Pset_raw t  of_Pset_wf _ Ht.
327 328 329 330 331 332 333

Lemma elem_of_to_gset X i : set_finite X  i  to_gset X  i  X.
Proof.
  intros ?. rewrite <-elem_of_to_Pset by done.
  unfold to_gset. by destruct (to_Pset X).
Qed.

334 335 336 337 338 339 340 341 342 343
Lemma elem_of_of_gset X i : i  of_gset X  i  X.
Proof. destruct X as [[[t ?]]]; apply elem_of_of_Pset_raw. Qed.
Lemma of_gset_finite X : set_finite (of_gset X).
Proof.
  apply coPset_finite_spec; destruct X as [[[t ?]]]; apply of_Pset_raw_finite.
Qed.

(** * Domain of finite maps *)
Instance Pmap_dom_coPset {A} : Dom (Pmap A) coPset := λ m, of_Pset (dom _ m).
Instance Pmap_dom_coPset_spec: FinMapDom positive Pmap coPset.
344
Proof.
345 346 347 348 349 350 351 352 353
  split; try apply _; intros A m i; unfold dom, Pmap_dom_coPset.
  by rewrite elem_of_of_Pset, elem_of_dom.
Qed.
Instance gmap_dom_coPset {A} : Dom (gmap positive A) coPset := λ m,
  of_gset (dom _ m).
Instance gmap_dom_coPset_spec: FinMapDom positive (gmap positive) coPset.
Proof.
  split; try apply _; intros A m i; unfold dom, gmap_dom_coPset.
  by rewrite elem_of_of_gset, elem_of_dom.
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
Qed.

(** * Suffix sets *)
Fixpoint coPset_suffixes_raw (p : positive) : coPset_raw :=
  match p with
  | 1 => coPLeaf true
  | p~0 => coPNode' false (coPset_suffixes_raw p) (coPLeaf false)
  | p~1 => coPNode' false (coPLeaf false) (coPset_suffixes_raw p)
  end.
Lemma coPset_suffixes_wf p : coPset_wf (coPset_suffixes_raw p).
Proof. induction p; simpl; eauto. Qed.
Definition coPset_suffixes (p : positive) : coPset :=
  coPset_suffixes_raw p  coPset_suffixes_wf _.
Lemma elem_coPset_suffixes p q : p  coPset_suffixes q   q', p = q' ++ q.
Proof.
  unfold elem_of, coPset_elem_of; simpl; split.
370
  - revert p; induction q; intros [?|?|]; simpl;
371
      rewrite ?coPset_elem_of_node; naive_solver.
372
  - by intros [q' ->]; induction q; simpl; rewrite ?coPset_elem_of_node.
373
Qed.
Ralf Jung's avatar
Ralf Jung committed
374 375 376
Lemma coPset_suffixes_infinite p : ¬set_finite (coPset_suffixes p).
Proof.
  rewrite coPset_finite_spec; simpl.
377 378
  induction p; simpl; rewrite ?coPset_finite_node, ?andb_True; naive_solver.
Qed.
Ralf Jung's avatar
Ralf Jung committed
379

380
(** * Splitting of infinite sets *)
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
Fixpoint coPset_l_raw (t : coPset_raw) : coPset_raw :=
  match t with
  | coPLeaf false => coPLeaf false
  | coPLeaf true => coPNode true (coPLeaf true) (coPLeaf false)
  | coPNode b l r => coPNode' b (coPset_l_raw l) (coPset_l_raw r)
  end.
Fixpoint coPset_r_raw (t : coPset_raw) : coPset_raw :=
  match t with
  | coPLeaf false => coPLeaf false
  | coPLeaf true => coPNode false (coPLeaf false) (coPLeaf true)
  | coPNode b l r => coPNode' false (coPset_r_raw l) (coPset_r_raw r)
  end.

Lemma coPset_l_wf t : coPset_wf (coPset_l_raw t).
Proof. induction t as [[]|]; simpl; auto. Qed.
Lemma coPset_r_wf t : coPset_wf (coPset_r_raw t).
Proof. induction t as [[]|]; simpl; auto. Qed.
398 399 400 401
Definition coPset_l (X : coPset) : coPset :=
  let (t,Ht) := X in coPset_l_raw t  coPset_l_wf _.
Definition coPset_r (X : coPset) : coPset :=
  let (t,Ht) := X in coPset_r_raw t  coPset_r_wf _.
402 403 404 405

Lemma coPset_lr_disjoint X : coPset_l X  coPset_r X = .
Proof.
  apply elem_of_equiv_empty_L; intros p; apply Is_true_false.
406
  destruct X as [t Ht]; simpl; clear Ht; rewrite elem_to_Pset_intersection.
407
  revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
408
    rewrite ?coPset_elem_of_node; simpl;
409 410 411 412 413
    rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
Qed.
Lemma coPset_lr_union X : coPset_l X  coPset_r X = X.
Proof.
  apply elem_of_equiv_L; intros p; apply eq_bool_prop_elim.
414
  destruct X as [t Ht]; simpl; clear Ht; rewrite elem_to_Pset_union.
415
  revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
416
    rewrite ?coPset_elem_of_node; simpl;
417 418
    rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
Qed.
419
Lemma coPset_l_finite X : set_finite (coPset_l X)  set_finite X.
420
Proof.
421 422
  rewrite !coPset_finite_spec; destruct X as [t Ht]; simpl; clear Ht.
  induction t as [[]|]; simpl; rewrite ?coPset_finite_node, ?andb_True; tauto.
423
Qed.
424
Lemma coPset_r_finite X : set_finite (coPset_r X)  set_finite X.
425
Proof.
426 427
  rewrite !coPset_finite_spec; destruct X as [t Ht]; simpl; clear Ht.
  induction t as [[]|]; simpl; rewrite ?coPset_finite_node, ?andb_True; tauto.
428
Qed.
429 430 431
Lemma coPset_split X :
  ¬set_finite X 
   X1 X2, X = X1  X2  X1  X2 =   ¬set_finite X1  ¬set_finite X2.
432
Proof.
433 434
  exists (coPset_l X), (coPset_r X); eauto 10 using coPset_lr_union,
    coPset_lr_disjoint, coPset_l_finite, coPset_r_finite.
435
Qed.