(* Copyright (c) 2012-2019, Coq-std++ developers. *) (* This file is distributed under the terms of the BSD license. *) (** This file collects theorems, definitions, tactics, related to propositions with a decidable equality. Such propositions are collected by the [Decision] type class. *) From stdpp Require Export proof_irrel. Set Default Proof Using "Type*". Lemma dec_stable `{Decision P} : ¬¬P → P. Proof. firstorder. Qed. Lemma Is_true_reflect (b : bool) : reflect b b. Proof. destruct b. left; constructor. right. intros []. Qed. Instance: Inj (=) (↔) Is_true. Proof. intros [] []; simpl; intuition. Qed. Lemma decide_True {A} `{Decision P} (x y : A) : P → (if decide P then x else y) = x. Proof. destruct (decide P); tauto. Qed. Lemma decide_False {A} `{Decision P} (x y : A) : ¬P → (if decide P then x else y) = y. Proof. destruct (decide P); tauto. Qed. Lemma decide_iff {A} P Q `{Decision P, Decision Q} (x y : A) : (P ↔ Q) → (if decide P then x else y) = (if decide Q then x else y). Proof. intros [??]. destruct (decide P), (decide Q); tauto. Qed. Lemma decide_left `{Decision P, !ProofIrrel P} (HP : P) : decide P = left HP. Proof. destruct (decide P); [|contradiction]. f_equal. apply proof_irrel. Qed. Lemma decide_right `{Decision P, !ProofIrrel (¬ P)} (HP : ¬ P) : decide P = right HP. Proof. destruct (decide P); [contradiction|]. f_equal. apply proof_irrel. Qed. (** The tactic [destruct_decide] destructs a sumbool [dec]. If one of the components is double negated, it will try to remove the double negation. *) Tactic Notation "destruct_decide" constr(dec) "as" ident(H) := destruct dec as [H|H]; try match type of H with | ¬¬_ => apply dec_stable in H end. Tactic Notation "destruct_decide" constr(dec) := let H := fresh in destruct_decide dec as H. (** The tactic [case_decide] performs case analysis on an arbitrary occurrence of [decide] or [decide_rel] in the conclusion or hypotheses. *) Tactic Notation "case_decide" "as" ident(Hd) := match goal with | H : context [@decide ?P ?dec] |- _ => destruct_decide (@decide P dec) as Hd | H : context [@decide_rel _ _ ?R ?x ?y ?dec] |- _ => destruct_decide (@decide_rel _ _ R x y dec) as Hd | |- context [@decide ?P ?dec] => destruct_decide (@decide P dec) as Hd | |- context [@decide_rel _ _ ?R ?x ?y ?dec] => destruct_decide (@decide_rel _ _ R x y dec) as Hd end. Tactic Notation "case_decide" := let H := fresh in case_decide as H. (** The tactic [solve_decision] uses Coq's [decide equality] tactic together with instance resolution to automatically generate decision procedures. *) Ltac solve_trivial_decision := match goal with | |- Decision (?P) => apply _ | |- sumbool ?P (¬?P) => change (Decision P); apply _ end. Ltac solve_decision := unfold EqDecision; intros; first [ solve_trivial_decision | unfold Decision; decide equality; solve_trivial_decision ]. (** The following combinators are useful to create Decision proofs in combination with the [refine] tactic. *) Notation swap_if S := (match S with left H => right H | right H => left H end). Notation cast_if S := (if S then left _ else right _). Notation cast_if_and S1 S2 := (if S1 then cast_if S2 else right _). Notation cast_if_and3 S1 S2 S3 := (if S1 then cast_if_and S2 S3 else right _). Notation cast_if_and4 S1 S2 S3 S4 := (if S1 then cast_if_and3 S2 S3 S4 else right _). Notation cast_if_and5 S1 S2 S3 S4 S5 := (if S1 then cast_if_and4 S2 S3 S4 S5 else right _). Notation cast_if_and6 S1 S2 S3 S4 S5 S6 := (if S1 then cast_if_and5 S2 S3 S4 S5 S6 else right _). Notation cast_if_or S1 S2 := (if S1 then left _ else cast_if S2). Notation cast_if_or3 S1 S2 S3 := (if S1 then left _ else cast_if_or S2 S3). Notation cast_if_not_or S1 S2 := (if S1 then cast_if S2 else left _). Notation cast_if_not S := (if S then right _ else left _). (** We can convert decidable propositions to booleans. *) Definition bool_decide (P : Prop) {dec : Decision P} : bool := if dec then true else false. Lemma bool_decide_reflect P `{dec : Decision P} : reflect P (bool_decide P). Proof. unfold bool_decide. destruct dec; [left|right]; assumption. Qed. Lemma bool_decide_decide P `{!Decision P} : bool_decide P = if decide P then true else false. Proof. reflexivity. Qed. Lemma decide_bool_decide P {Hdec: Decision P} {X : Type} (x1 x2 : X): (if decide P then x1 else x2) = (if bool_decide P then x1 else x2). Proof. unfold bool_decide, decide. destruct Hdec; reflexivity. Qed. Tactic Notation "case_bool_decide" "as" ident (Hd) := match goal with | H : context [@bool_decide ?P ?dec] |- _ => destruct_decide (@bool_decide_reflect P dec) as Hd | |- context [@bool_decide ?P ?dec] => destruct_decide (@bool_decide_reflect P dec) as Hd end. Tactic Notation "case_bool_decide" := let H := fresh in case_bool_decide as H. Lemma bool_decide_spec (P : Prop) {dec : Decision P} : bool_decide P ↔ P. Proof. unfold bool_decide. destruct dec; simpl; tauto. Qed. Lemma bool_decide_unpack (P : Prop) {dec : Decision P} : bool_decide P → P. Proof. rewrite bool_decide_spec; trivial. Qed. Lemma bool_decide_pack (P : Prop) {dec : Decision P} : P → bool_decide P. Proof. rewrite bool_decide_spec; trivial. Qed. Hint Resolve bool_decide_pack : core. Lemma bool_decide_eq_true (P : Prop) `{Decision P} : bool_decide P = true ↔ P. Proof. case_bool_decide; intuition discriminate. Qed. Lemma bool_decide_eq_false (P : Prop) `{Decision P} : bool_decide P = false ↔ ¬P. Proof. case_bool_decide; intuition discriminate. Qed. Lemma bool_decide_iff (P Q : Prop) `{Decision P, Decision Q} : (P ↔ Q) → bool_decide P = bool_decide Q. Proof. repeat case_bool_decide; tauto. Qed. Lemma bool_decide_eq_true_1 P `{!Decision P}: bool_decide P = true → P. Proof. apply bool_decide_eq_true. Qed. Lemma bool_decide_eq_true_2 P `{!Decision P}: P → bool_decide P = true. Proof. apply bool_decide_eq_true. Qed. Lemma bool_decide_eq_false_1 P `{!Decision P}: bool_decide P = false → ¬P. Proof. apply bool_decide_eq_false. Qed. Lemma bool_decide_eq_false_2 P `{!Decision P}: ¬P → bool_decide P = false. Proof. apply bool_decide_eq_false. Qed. (** Backwards compatibility notations. *) Notation bool_decide_true := bool_decide_eq_true_2. Notation bool_decide_false := bool_decide_eq_false_2. (** * Decidable Sigma types *) (** Leibniz equality on Sigma types requires the equipped proofs to be equal as Coq does not support proof irrelevance. For decidable we propositions we define the type [dsig P] whose Leibniz equality is proof irrelevant. That is [∀ x y : dsig P, x = y ↔ `x = `y]. *) Definition dsig `(P : A → Prop) `{∀ x : A, Decision (P x)} := { x | bool_decide (P x) }. Definition proj2_dsig `{∀ x : A, Decision (P x)} (x : dsig P) : P (`x) := bool_decide_unpack _ (proj2_sig x). Definition dexist `{∀ x : A, Decision (P x)} (x : A) (p : P x) : dsig P := x↾bool_decide_pack _ p. Lemma dsig_eq `(P : A → Prop) `{∀ x, Decision (P x)} (x y : dsig P) : x = y ↔ `x = `y. Proof. apply (sig_eq_pi _). Qed. Lemma dexists_proj1 `(P : A → Prop) `{∀ x, Decision (P x)} (x : dsig P) p : dexist (`x) p = x. Proof. apply dsig_eq; reflexivity. Qed. (** * Instances of [Decision] *) (** Instances of [Decision] for operators of propositional logic. *) Instance True_dec: Decision True := left I. Instance False_dec: Decision False := right (False_rect False). Instance Is_true_dec b : Decision (Is_true b). Proof. destruct b; simpl; apply _. Defined. Section prop_dec. Context `(P_dec : Decision P) `(Q_dec : Decision Q). Global Instance not_dec: Decision (¬P). Proof. refine (cast_if_not P_dec); intuition. Defined. Global Instance and_dec: Decision (P ∧ Q). Proof. refine (cast_if_and P_dec Q_dec); intuition. Defined. Global Instance or_dec: Decision (P ∨ Q). Proof. refine (cast_if_or P_dec Q_dec); intuition. Defined. Global Instance impl_dec: Decision (P → Q). Proof. refine (if P_dec then cast_if Q_dec else left _); intuition. Defined. End prop_dec. Instance iff_dec `(P_dec : Decision P) `(Q_dec : Decision Q) : Decision (P ↔ Q) := and_dec _ _. (** Instances of [Decision] for common data types. *) Instance bool_eq_dec : EqDecision bool. Proof. solve_decision. Defined. Instance unit_eq_dec : EqDecision unit. Proof. solve_decision. Defined. Instance Empty_set_eq_dec : EqDecision Empty_set. Proof. solve_decision. Defined. Instance prod_eq_dec `{EqDecision A, EqDecision B} : EqDecision (A * B). Proof. solve_decision. Defined. Instance sum_eq_dec `{EqDecision A, EqDecision B} : EqDecision (A + B). Proof. solve_decision. Defined. Instance curry_dec `(P_dec : ∀ (x : A) (y : B), Decision (P x y)) p : Decision (curry P p) := match p as p return Decision (curry P p) with | (x,y) => P_dec x y end. Instance sig_eq_dec `(P : A → Prop) `{∀ x, ProofIrrel (P x), EqDecision A} : EqDecision (sig P). Proof. refine (λ x y, cast_if (decide (`x = `y))); rewrite sig_eq_pi; trivial. Defined. (** Some laws for decidable propositions *) Lemma not_and_l {P Q : Prop} `{Decision P} : ¬(P ∧ Q) ↔ ¬P ∨ ¬Q. Proof. destruct (decide P); tauto. Qed. Lemma not_and_r {P Q : Prop} `{Decision Q} : ¬(P ∧ Q) ↔ ¬P ∨ ¬Q. Proof. destruct (decide Q); tauto. Qed. Lemma not_and_l_alt {P Q : Prop} `{Decision P} : ¬(P ∧ Q) ↔ ¬P ∨ (¬Q ∧ P). Proof. destruct (decide P); tauto. Qed. Lemma not_and_r_alt {P Q : Prop} `{Decision Q} : ¬(P ∧ Q) ↔ (¬P ∧ Q) ∨ ¬Q. Proof. destruct (decide Q); tauto. Qed. Program Definition inj_eq_dec `{EqDecision A} {B} (f : B → A) `{!Inj (=) (=) f} : EqDecision B := λ x y, cast_if (decide (f x = f y)). Solve Obligations with firstorder congruence. (** * Instances of [RelDecision] *) Definition flip_dec {A} (R : relation A) `{!RelDecision R} : RelDecision (flip R) := λ x y, decide_rel R y x. (** We do not declare this as an actual instance since Coq can unify [flip ?R] with any relation. Coq's standard library is carrying out the same approach for the [Reflexive], [Transitive], etc, instance of [flip]. *) Hint Extern 3 (RelDecision (flip _)) => apply flip_dec : typeclass_instances.