Commit 87b2fe62 authored by Robbert's avatar Robbert

Merge branch 'robbert/relations' into 'master'

Confluent relations

See merge request !53
parents 824e9723 89454051
Pipeline #14519 passed with stage
in 15 minutes and 41 seconds
......@@ -2,8 +2,7 @@
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on abstract rewriting systems.
These are particularly useful as we define the operational semantics as a
small step semantics. This file defines a hint database [ars] containing
some theorems on abstract rewriting systems. *)
small step semantics. *)
From Coq Require Import Wf_nat.
From stdpp Require Export tactics base.
Set Default Proof Using "Type".
......@@ -18,6 +17,9 @@ Section definitions.
(** An element is in normal form if no further steps are possible. *)
Definition nf (x : A) := ¬red x.
(** The symmetric closure. *)
Definition sc : relation A := λ x y, R x y R y x.
(** The reflexive transitive closure. *)
Inductive rtc : relation A :=
| rtc_refl x : rtc x x
......@@ -54,13 +56,29 @@ Section definitions.
| ex_loop_do_step x y : R x y ex_loop y ex_loop x.
End definitions.
(* Strongly normalizing elements *)
(** The reflexive transitive symmetric closure. *)
Definition rtsc {A} (R : relation A) := rtc (sc R).
(** Strongly normalizing elements. *)
Notation sn R := (Acc (flip R)).
(** The various kinds of "confluence" properties. Any relation that has the
diamond property is confluent, and any confluent relation is locally confluent.
The naming convention are taken from "Term Rewriting and All That" by Baader and
Nipkow. *)
Definition diamond {A} (R : relation A) :=
x y1 y2, R x y1 R x y2 z, R y1 z R y2 z.
Definition confluent {A} (R : relation A) :=
diamond (rtc R).
Definition locally_confluent {A} (R : relation A) :=
x y1 y2, R x y1 R x y2 z, rtc R y1 z rtc R y2 z.
Hint Unfold nf red : core.
(** * General theorems *)
Section rtc.
Section closure.
Context `{R : relation A}.
Hint Constructors rtc nsteps bsteps tc : core.
......@@ -79,6 +97,14 @@ Section rtc.
Global Instance rtc_po : PreOrder (rtc R) | 10.
Proof. split. exact (@rtc_refl A R). exact rtc_transitive. Qed.
(* Not an instance, related to the issue described above, this sometimes makes
[setoid_rewrite] queries loop. *)
Lemma rtc_equivalence : Symmetric R Equivalence (rtc R).
Proof.
split; try apply _.
intros x y. induction 1 as [|x1 x2 x3]; [done|trans x2; eauto].
Qed.
Lemma rtc_once x y : R x y rtc R x y.
Proof. eauto. Qed.
Lemma rtc_r x y z : rtc R x y R y z rtc R x z.
......@@ -106,6 +132,9 @@ Section rtc.
Lemma rtc_inv_r x z : rtc R x z x = z y, rtc R x y R y z.
Proof. revert z. apply rtc_ind_r; eauto. Qed.
Lemma rtc_nf x y : rtc R x y nf R x x = y.
Proof. destruct 1 as [x|x y1 y2]. done. intros []; eauto. Qed.
Lemma nsteps_once x y : R x y nsteps R 1 x y.
Proof. eauto. Qed.
Lemma nsteps_trans n m x y z :
......@@ -172,6 +201,36 @@ Section rtc.
Lemma tc_rtc x y : tc R x y rtc R x y.
Proof. induction 1; eauto. Qed.
Global Instance sc_symmetric : Symmetric (sc R).
Proof. unfold Symmetric, sc. naive_solver. Qed.
Lemma sc_lr x y : R x y sc R x y.
Proof. by left. Qed.
Lemma sc_rl x y : R y x sc R x y.
Proof. by right. Qed.
End closure.
Section more_closure.
Context `{R : relation A}.
Global Instance rtsc_equivalence : Equivalence (rtsc R) | 10.
Proof. apply rtc_equivalence, _. Qed.
Lemma rtsc_lr x y : R x y rtsc R x y.
Proof. unfold rtsc. eauto using sc_lr, rtc_once. Qed.
Lemma rtsc_rl x y : R y x rtsc R x y.
Proof. unfold rtsc. eauto using sc_rl, rtc_once. Qed.
Lemma rtc_rtsc_rl x y : rtc R x y rtsc R x y.
Proof. induction 1; econstructor; eauto using sc_lr. Qed.
Lemma rtc_rtsc_lr x y : rtc R y x rtsc R x y.
Proof. intros. symmetry. eauto using rtc_rtsc_rl. Qed.
End more_closure.
Section properties.
Context `{R : relation A}.
Hint Constructors rtc nsteps bsteps tc : core.
Lemma acc_not_ex_loop x : Acc (flip R) x ¬ex_loop R x.
Proof. unfold not. induction 1; destruct 1; eauto. Qed.
......@@ -188,11 +247,60 @@ Section rtc.
intros H. cut ( z, rtc R x z all_loop R z); [eauto|].
cofix FIX. constructor; eauto using rtc_r.
Qed.
End rtc.
Hint Constructors rtc nsteps bsteps tc : ars.
Hint Resolve rtc_once rtc_r tc_r rtc_transitive tc_rtc_l tc_rtc_r
tc_rtc bsteps_once bsteps_r bsteps_refl bsteps_trans : ars.
(** An alternative definition of confluence; also known as the Church-Rosser
property. *)
Lemma confluent_alt :
confluent R ( x y, rtsc R x y z, rtc R x z rtc R y z).
Proof.
split.
- intros Hcr. induction 1 as [x|x y1 y1' [Hy1|Hy1] Hy1' (z&IH1&IH2)]; eauto.
destruct (Hcr y1 x z) as (z'&?&?); eauto using rtc_transitive.
- intros Hcr x y1 y2 Hy1 Hy2.
apply Hcr; trans x; eauto using rtc_rtsc_rl, rtc_rtsc_lr.
Qed.
Lemma confluent_nf_r x y :
confluent R rtsc R x y nf R y rtc R x y.
Proof.
rewrite confluent_alt. intros Hcr ??. destruct (Hcr x y) as (z&Hx&Hy); auto.
by apply rtc_nf in Hy as ->.
Qed.
Lemma confluent_nf_l x y :
confluent R rtsc R x y nf R x rtc R y x.
Proof. intros. by apply (confluent_nf_r y x). Qed.
Lemma diamond_confluent :
diamond R confluent R.
Proof.
intros Hdiam. assert ( x y1 y2,
rtc R x y1 R x y2 z, rtc R y1 z rtc R y2 z) as Hstrip.
{ intros x y1 y2 Hy1; revert y2.
induction Hy1 as [x|x y1 y1' Hy1 Hy1' IH]; [by eauto|]; intros y2 Hy2.
destruct (Hdiam x y1 y2) as (z&Hy1z&Hy2z); auto.
destruct (IH z) as (z'&?&?); eauto. }
intros x y1 y2 Hy1; revert y2.
induction Hy1 as [x|x y1 y1' Hy1 Hy1' IH]; [by eauto|]; intros y2 Hy2.
destruct (Hstrip x y2 y1) as (z&?&?); eauto.
destruct (IH z) as (z'&?&?); eauto using rtc_transitive.
Qed.
Lemma confluent_locally_confluent :
confluent R locally_confluent R.
Proof. unfold confluent, locally_confluent; eauto. Qed.
(** The following is also known as Newman's lemma *)
Lemma locally_confluent_confluent :
( x, sn R x) locally_confluent R confluent R.
Proof.
intros Hsn Hcr x. induction (Hsn x) as [x _ IH].
intros y1 y2 Hy1 Hy2. destruct Hy1 as [x|x y1 y1' Hy1 Hy1']; [by eauto|].
destruct Hy2 as [x|x y2 y2' Hy2 Hy2']; [by eauto|].
destruct (Hcr x y1 y2) as (z&Hy1z&Hy2z); auto.
destruct (IH _ Hy1 y1' z) as (z1&?&?); auto.
destruct (IH _ Hy2 y2' z1) as (z2&?&?); eauto using rtc_transitive.
Qed.
End properties.
(** * Theorems on sub relations *)
Section subrel.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment