Commit 6db15631 by Jacques-Henri Jourdan

### Simplify frac : use a pair of a rational and a carrier

parent bc7d4ca9
 ... @@ -466,6 +466,11 @@ Instance fst_proper `{Equiv A, Equiv B} : Proper ((≡) ==> (≡)) (@fst A B) := ... @@ -466,6 +466,11 @@ Instance fst_proper `{Equiv A, Equiv B} : Proper ((≡) ==> (≡)) (@fst A B) := Instance snd_proper `{Equiv A, Equiv B} : Proper ((≡) ==> (≡)) (@snd A B) := _. Instance snd_proper `{Equiv A, Equiv B} : Proper ((≡) ==> (≡)) (@snd A B) := _. Typeclasses Opaque prod_equiv. Typeclasses Opaque prod_equiv. Instance prod_leibniz `{LeibnizEquiv A, !Equivalence ((≡) : relation A), LeibnizEquiv B, !Equivalence ((≡) : relation B)} : LeibnizEquiv (A * B). Proof. intros [] [] []; fold_leibniz; simpl; congruence. Qed. (** ** Sums *) (** ** Sums *) Definition sum_map {A A' B B'} (f: A → A') (g: B → B') (xy : A + B) : A' + B' := Definition sum_map {A A' B B'} (f: A → A') (g: B → B') (xy : A + B) : A' + B' := match xy with inl x => inl (f x) | inr y => inr (g y) end. match xy with inl x => inl (f x) | inr y => inr (g y) end. ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!