Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
S
stdpp
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
21
Issues
21
List
Boards
Labels
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
stdpp
Commits
02687b13
Commit
02687b13
authored
Jun 30, 2019
by
Robbert
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'ralf/bool_decide' into 'master'
add invserses of bool_decide_{true,false} See merge request
!81
parents
3b8eed3c
3db8e2f7
Pipeline
#18099
passed with stage
in 8 minutes and 31 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
19 additions
and
4 deletions
+19
-4
decidable.v
theories/decidable.v
+19
-4
No files found.
theories/decidable.v
View file @
02687b13
...
...
@@ -112,14 +112,29 @@ Proof. rewrite bool_decide_spec; trivial. Qed.
Lemma
bool_decide_pack
(
P
:
Prop
)
{
dec
:
Decision
P
}
:
P
→
bool_decide
P
.
Proof
.
rewrite
bool_decide_spec
;
trivial
.
Qed
.
Hint
Resolve
bool_decide_pack
:
core
.
Lemma
bool_decide_true
(
P
:
Prop
)
`
{
Decision
P
}
:
P
→
bool_decide
P
=
true
.
Proof
.
case_bool_decide
;
tauto
.
Qed
.
Lemma
bool_decide_false
(
P
:
Prop
)
`
{
Decision
P
}
:
¬
P
→
bool_decide
P
=
false
.
Proof
.
case_bool_decide
;
tauto
.
Qed
.
Lemma
bool_decide_eq_true
(
P
:
Prop
)
`
{
Decision
P
}
:
bool_decide
P
=
true
↔
P
.
Proof
.
case_bool_decide
;
intuition
discriminate
.
Qed
.
Lemma
bool_decide_eq_false
(
P
:
Prop
)
`
{
Decision
P
}
:
bool_decide
P
=
false
↔
¬
P
.
Proof
.
case_bool_decide
;
intuition
discriminate
.
Qed
.
Lemma
bool_decide_iff
(
P
Q
:
Prop
)
`
{
Decision
P
,
Decision
Q
}
:
(
P
↔
Q
)
→
bool_decide
P
=
bool_decide
Q
.
Proof
.
repeat
case_bool_decide
;
tauto
.
Qed
.
Lemma
bool_decide_eq_true_1
P
`
{!
Decision
P
}:
bool_decide
P
=
true
→
P
.
Proof
.
apply
bool_decide_eq_true
.
Qed
.
Lemma
bool_decide_eq_true_2
P
`
{!
Decision
P
}:
P
→
bool_decide
P
=
true
.
Proof
.
apply
bool_decide_eq_true
.
Qed
.
Lemma
bool_decide_eq_false_1
P
`
{!
Decision
P
}:
bool_decide
P
=
false
→
¬
P
.
Proof
.
apply
bool_decide_eq_false
.
Qed
.
Lemma
bool_decide_eq_false_2
P
`
{!
Decision
P
}:
¬
P
→
bool_decide
P
=
false
.
Proof
.
apply
bool_decide_eq_false
.
Qed
.
(** Backwards compatibility notations. *)
Notation
bool_decide_true
:=
bool_decide_eq_true_2
.
Notation
bool_decide_false
:=
bool_decide_eq_false_2
.
(** * Decidable Sigma types *)
(** Leibniz equality on Sigma types requires the equipped proofs to be
equal as Coq does not support proof irrelevance. For decidable we
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment