base.v 15.1 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

5 6 7 8 9 10
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.

(* Change True and False into notations so we can overload them *)
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
11

12
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

(*  Common notations *)
Delimit Scope C_scope with C.
Global Open Scope C_scope.

Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

Notation "(→)" := (λ x y, x  y) : C_scope.
Notation "( T →)" := (λ y, T  y) : C_scope.
Notation "(→ T )" := (λ y, y  T) : C_scope.
30 31
Notation "t $ r" := (t r)
  (at level 65, right associativity,only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

(* Provable propositions *)
Class PropHolds (P : Prop) := prop_holds: P.

(* Decidable propositions *)
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

(* Common relations & operations *)
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
Hint Extern 0 (?x  ?x) => reflexivity.

Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

Class Intersection A := intersection: A  A  A.
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

Class SubsetEq A := subseteq: A  A  Prop.
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

Hint Extern 0 (?x  ?x) => reflexivity.

Class Singleton A B := singleton: A  B.
94 95 96
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
97 98 99 100 101 102 103 104 105 106 107

Class ElemOf A B := elem_of: A  B  Prop.
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

108 109 110 111 112 113
Class UnionWith M :=
  union_with:  {A}, (A  A  A)  M A  M A  M A.
Class IntersectionWith M :=
  intersection_with:  {A}, (A  A  A)  M A  M A  M A.
Class DifferenceWith M :=
  difference_with:  {A}, (A  A  option A)  M A  M A  M A.
Robbert Krebbers's avatar
Robbert Krebbers committed
114 115

(* Common properties *)
116 117 118 119 120 121 122 123 124 125 126 127
Class Injective {A B} R S (f : A  B) :=
  injective:  x y : A, S (f x) (f y)  R x y.
Class Idempotent {A} R (f : A  A  A) :=
  idempotent:  x, R (f x x) x.
Class Commutative {A B} R (f : B  B  A) :=
  commutative:  x y, R (f x y) (f y x).
Class LeftId {A} R (i : A) (f : A  A  A) :=
  left_id:  x, R (f i x) x.
Class RightId {A} R (i : A) (f : A  A  A) :=
  right_id:  x, R (f x i) x.
Class Associative {A} R (f : A  A  A) :=
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
Robbert Krebbers's avatar
Robbert Krebbers committed
128 129 130 131 132 133 134 135

Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.

136
(* Using idempotent_eq we can force Coq to not use the setoid mechanism *)
137 138
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
139
Proof. auto. Qed.
140 141
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
142
Proof. auto. Qed.
143 144
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
145
Proof. auto. Qed.
146 147
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
148
Proof. auto. Qed.
149 150
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
151 152
Proof. auto. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
(* Monadic operations *)
Section monad_ops.
  Context (M : Type  Type).

  Class MRet := mret:  {A}, A  M A.
  Class MBind := mbind:  {A B}, (A  M B)  M A  M B.
  Class MJoin := mjoin:  {A}, M (M A)  M A.
  Class FMap := fmap:  {A B}, (A  B)  M A  M B.
End monad_ops.

Arguments mret {M MRet A} _.
Arguments mbind {M MBind A B} _ _.
Arguments mjoin {M MJoin A} _.
Arguments fmap {M FMap A B} _ _.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
169 170
Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, next at level 35, right associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
171 172 173 174 175 176 177 178
Infix "<$>" := fmap (at level 65, right associativity, only parsing) : C_scope.

(* Ordered structures *)
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} := {
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.

179 180
(* Note: no equality to avoid the need for setoids. We define setoid 
equality in a generic way. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} := {
  jsl_preorder :>> BoundedPreOrder A;
  subseteq_union_l x y : x  x  y;
  subseteq_union_r x y : y  x  y;
  union_least x y z : x  z  y  z  x  y  z
}.
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} := {
  msl_preorder :>> BoundedPreOrder A;
  subseteq_intersection_l x y : x  y  x;
  subseteq_intersection_r x y : x  y  y;
  intersection_greatest x y z : z  x  z  y  z  x  y
}.

(* Containers *)
Class Size C := size: C  nat.
Class Map A C := map: (A  A)  (C  C).

Class Collection A C `{ElemOf A C} `{Empty C} `{Union C} 
    `{Intersection C} `{Difference C} `{Singleton A C} `{Map A C} := {
  elem_of_empty (x : A) : x  ;
201
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
Robbert Krebbers's avatar
Robbert Krebbers committed
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_map f X (x : A) : x  map f X   y, x = f y  y  X
}.

Class Elements A C := elements: C  list A.
Class FinCollection A C `{Empty C} `{Union C} `{Intersection C} `{Difference C} 
    `{Singleton A C} `{ElemOf A C} `{Map A C} `{Elements A C} := {
  fin_collection :>> Collection A C;
  elements_spec X x : x  X  In x (elements X);
  elements_nodup X : NoDup (elements X)
}. 

Class Fresh A C := fresh: C  A.
Class FreshSpec A C `{!Fresh A C} `{!ElemOf A C} := {
  fresh_proper X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
  is_fresh (X : C) : fresh X  X
}.

(* Maps *)
Class Lookup K M := lookup:  {A}, K  M A  option A.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
Class PartialAlter K M :=
  partial_alter:  {A}, (option A  option A)  K  M A  M A.
Class Alter K M :=
  alter:  {A}, (A  A)  K  M A  M A.
Class Dom K M :=
  dom:  C `{Empty C} `{Union C} `{Singleton K C}, M  C.
Class Merge M :=
  merge:  {A}, (option A  option A  option A)  M A  M A  M A.
Class Insert K M :=
  insert:  {A}, K  A  M A  M A.
Notation "<[ k := a ]>" := (insert k a) 
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
Class Delete K M :=
  delete: K  M  M.

Definition insert_list `{Insert K M} {A} (l : list (K * A)) (m : M A) : M A :=
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Definition delete_list `{Delete K M} (l : list K) (m : M) : M := 
  fold_right delete m l.
Robbert Krebbers's avatar
Robbert Krebbers committed
248 249

(* Misc *)
250 251 252 253
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
254 255 256 257 258 259 260 261 262 263
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

264 265 266 267 268 269
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
270 271 272

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
273 274
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
275
  Proof. firstorder eauto. Qed.
276 277
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
278
  Proof. firstorder eauto. Qed.
279 280
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
281
  Proof. firstorder eauto. Qed.
282 283
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
284 285 286 287 288 289 290 291 292
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

293 294
Definition lift_relation {A B} (R : relation A)
  (f : B  A) : relation B := λ x y, R (f x) (f y).
Robbert Krebbers's avatar
Robbert Krebbers committed
295 296 297
Definition lift_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (lift_relation R f).
Proof. unfold lift_relation. firstorder. Qed.
298 299
Hint Extern 0 (Equivalence (lift_relation _ _)) =>
  eapply @lift_relation_equivalence : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
300 301 302 303 304 305 306 307 308 309 310 311 312 313

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
Proof. easy. Qed.
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
Proof. easy. Qed.
Instance:  A, Associative (=) (λ x _ : A, x).
Proof. easy. Qed.
Instance:  A, Associative (=) (λ _ x : A, x).
Proof. easy. Qed.
Instance:  A, Idempotent (=) (λ x _ : A, x).
Proof. easy. Qed.
Instance:  A, Idempotent (=) (λ _ x : A, x).
Proof. easy. Qed.

314 315
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
316
Proof. easy. Qed.
317 318
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
319
Proof. easy. Qed.
320 321
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
322 323 324 325 326 327 328 329 330
Proof. easy. Qed.

Ltac simplify_eqs := repeat
  match goal with
  | |- _ => progress subst
  | |- _ = _ => reflexivity
  | H : _  _ |- _ => now destruct H
  | H : _ = _  False |- _ => now destruct H
  | H : _ = _ |- _ => discriminate H
331 332
  | H : _ = _ |-  ?G =>
    change (id G); injection H; clear H; intros; unfold id at 1
Robbert Krebbers's avatar
Robbert Krebbers committed
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
  | H : ?f _ = ?f _ |- _ => apply (injective f) in H
  | H : ?f _ ?x = ?f _ ?x |- _ => apply (injective (λ y, f y x)) in H
  end.

Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
Proof. now repeat intro. Qed.

Ltac solve_propholds :=
  match goal with
  | [ |- PropHolds (?P) ] => apply _
  | [ |- ?P ] => change (PropHolds P); apply _
  end.

Tactic Notation "remember" constr(t) "as" "(" ident(x) "," ident(E) ")" :=
  remember t as x;
  match goal with
  | E' : x = _ |- _ => rename E' into E
  end.
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

Ltac feed tac H :=
  let H' := type of H in
  match eval hnf in H' with
  | ?T1  ?T2 =>
    let HT1 := fresh in assert T1 as HT1;
    [| feed tac (H HT1); clear HT1 ]
  | _ => tac H
  end.
Tactic Notation "feed" tactic(tac) constr(H) := feed tac H.

Ltac efeed tac H :=
  let H' := type of H in
  match eval hnf in H' with
  | ?T1  ?T2 =>
    let HT1 := fresh in assert T1 as HT1; [| efeed tac (H HT1); clear HT1 ]
  | ?T1  _ =>
    let e := fresh in evar (e:T1);
    let e' := eval unfold e in e in
    clear e; efeed tac (H e')
  | _ => tac H
  end.
Tactic Notation "efeed" tactic(tac) constr(H) := efeed tac H.

Tactic Notation "feed" "pose" "proof" constr(H) "as" ident(H') :=
  feed (fun H => pose proof H as H') H.
Tactic Notation "feed" "pose" "proof" constr(H) :=
  feed (fun H => pose proof H) H.

Tactic Notation "efeed" "pose" "proof" constr(H) "as" ident(H') :=
  efeed (fun H => pose proof H as H') H.
Tactic Notation "efeed" "pose" "proof" constr(H) :=
  efeed (fun H => pose proof H) H.

Tactic Notation "feed" "specialize" ident(H) :=
  feed (fun H => specialize H) H.
Tactic Notation "efeed" "specialize" ident(H) :=
  efeed (fun H => specialize H) H.

Tactic Notation "feed" "inversion" constr(H) :=
  feed (fun H => let H':=fresh in pose proof H as H'; inversion H') H.
Tactic Notation "feed" "inversion" constr(H) "as" simple_intropattern(IP) :=
  feed (fun H => let H':=fresh in pose proof H as H'; inversion H' as IP) H.

Tactic Notation "feed" "destruct" constr(H) :=
  feed (fun H => let H':=fresh in pose proof H as H'; destruct H') H.
Tactic Notation "feed" "destruct" constr(H) "as" simple_intropattern(IP) :=
  feed (fun H => let H':=fresh in pose proof H as H'; destruct H' as IP) H.