base.v 32.2 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11 12 13 14
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

15 16
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
17 18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.
19
Arguments flip _ _ _ _ _ _/.
20

21 22 23 24
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
25 26
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

31 32
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
33 34 35
Delimit Scope C_scope with C.
Global Open Scope C_scope.

36
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
37 38 39 40 41 42 43 44 45
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

46 47 48 49
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

50
Notation "t $ r" := (t r)
51
  (at level 65, right associativity, only parsing) : C_scope.
52 53 54
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
55 56 57 58
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
59

60 61 62 63 64 65 66 67 68 69 70 71
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

72 73
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
74 75 76
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

77 78 79 80
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82
Class PropHolds (P : Prop) := prop_holds: P.

83 84
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
85
Proof. repeat intro; trivial. Qed.
86 87 88

Ltac solve_propholds :=
  match goal with
89 90
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
91 92 93 94 95 96 97
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
98 99 100
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with
  | populate x, populate y => populate (x,y)
  end.
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
  match iA with
  | populate x => populate (inl x)
  end.
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
  match iB with
  | populate y => populate (inl y)
  end.
Instance option_inhabited {A} : Inhabited (option A) := populate None.

123 124 125
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128 129 130 131 132 133 134 135
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.

Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv (A:=A))
  end.

157 158 159 160 161 162 163 164
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
165
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
166 167
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
168

169
(** ** Operations on collections *)
170
(** We define operational type classes for the traditional operations and
171
relations on collections: the empty collection [∅], the union [(∪)],
172 173
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
174 175 176 177
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
178
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
179 180 181 182 183
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

184 185 186 187 188
Definition union_list `{Empty A}
  `{Union A} : list A  A := fold_right () .
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
189
Class Intersection A := intersection: A  A  A.
190
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
191 192 193 194 195 196
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
197
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
198 199 200 201 202
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

203 204 205 206 207 208
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
209
Class SubsetEq A := subseteq: A  A  Prop.
210
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
211 212 213 214 215 216 217 218 219
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

220 221 222 223 224 225 226 227 228 229 230 231
Hint Extern 0 (_  _) => reflexivity.

Class Subset A := subset: A  A  Prop.
Instance: Params (@subset) 2.
Infix "⊂" := subset (at level 70) : C_scope.
Notation "(⊂)" := subset (only parsing) : C_scope.
Notation "( X ⊂ )" := (subset X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, subset Y X) (only parsing) : C_scope.
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
232 233

Class ElemOf A B := elem_of: A  B  Prop.
234
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
235 236 237 238 239 240 241 242 243
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
244 245 246 247 248 249 250
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
Notation "( X ⊥)" := (disjoint X) (only parsing) : C_scope.
Notation "(⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

251 252
Inductive list_disjoint `{Empty A} `{Union A}
      `{Disjoint A} : list A  Prop :=
253 254 255
  | disjoint_nil :
     list_disjoint []
  | disjoint_cons X Xs :
256
     X   Xs 
257 258
     list_disjoint Xs 
     list_disjoint (X :: Xs).
259
Lemma list_disjoint_cons_inv `{Empty A} `{Union A} `{Disjoint A} X Xs :
260
  list_disjoint (X :: Xs) 
261
  X   Xs  list_disjoint Xs.
262 263 264 265
Proof. inversion_clear 1; auto. Qed.

Class Filter A B :=
  filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
266

267 268
(* Arguments filter {_ _ _} _ {_} !_ / : simpl nomatch. *)

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
(** We define variants of the relations [(≡)] and [(⊆)] that are indexed by
an environment. *)
Class EquivEnv A B := equiv_env : A  relation B.
Notation "X ≡@{ E } Y" := (equiv_env E X Y)
  (at level 70, format "X  ≡@{ E }  Y") : C_scope.
Notation "(≡@{ E } )" := (equiv_env E)
  (E at level 1, only parsing) : C_scope.
Instance: Params (@equiv_env) 4.

Class SubsetEqEnv A B := subseteq_env : A  relation B.
Notation "X ⊆@{ E } Y" := (subseteq_env E X Y)
  (at level 70, format "X  ⊆@{ E }  Y") : C_scope.
Notation "(⊆@{ E } )" := (subseteq_env E)
  (E at level 1, only parsing) : C_scope.
Instance: Params (@subseteq_env) 4.

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)

301
(** We use these type classes merely for convenient overloading of notations and
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : Type  Type) {A B} (f : A  M B) := mbind: M A  M B.
Notation MBind M := ( {A B} (f : A  M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
Arguments mbind {_ _ _} _ {_} !_ / : simpl nomatch.

Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
Arguments mjoin {_ _ _} !_ / : simpl nomatch.

Class FMapD (M : Type  Type) {A B} (f : A  B) := fmap: M A  M B.
Notation FMap M := ( {A B} (f : A  B), FMapD M f)%type.
Instance: Params (@fmap) 6.
Arguments fmap {_ _ _} _ {_} !_ / : simpl nomatch.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.
329
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
330 331 332 333 334

Class MGuard (M : Type  Type) :=
  mguard:  P {dec : Decision P} {A}, M A  M A.
Notation "'guard' P ; o" := (mguard P o)
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.
335
Arguments mguard _ _ _ !_ _ !_ / : simpl nomatch.
336

337
(** ** Operations on maps *)
338 339
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
340
The function look up [m !! k] should yield the element at key [k] in [m]. *)
341 342
Class Lookup (K A M : Type) :=
  lookup: K  M  option A.
343 344 345 346 347 348
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
349
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
350 351 352

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
353 354
Class Insert (K A M : Type) :=
  insert: K  A  M  M.
355 356 357
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
358
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
359

360 361 362
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
363 364 365 366
Class Delete (K M : Type) :=
  delete: K  M  M.
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
367 368

(** The function [alter f k m] should update the value at key [k] using the
369
function [f], which is called with the original value. *)
370 371 372 373 374
Class AlterD (K A M : Type) (f : A  A) :=
  alter: K  M  M.
Notation Alter K A M := ( (f : A  A), AlterD K A M f)%type.
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
375 376

(** The function [alter f k m] should update the value at key [k] using the
377 378 379
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
380 381
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
382
Instance: Params (@partial_alter) 4.
383
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
384 385 386

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
387 388 389
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
390 391

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
392 393 394 395 396
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
397 398

(** We lift the insert and delete operation to lists of elements. *)
399
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
400 401
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
402
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
403
  fold_right delete m l.
404 405 406 407 408 409 410 411 412 413 414 415
Instance: Params (@delete_list) 3.

Definition insert_consecutive `{Insert nat A M}
    (i : nat) (l : list A) (m : M) : M :=
  fold_right (λ x f i, <[i:=x]>(f (S i))) (λ _, m) l i.
Instance: Params (@insert_consecutive) 3.

(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
416
Instance: Params (@union_with) 3.
417
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
418

419 420 421
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
422
Instance: Params (@intersection_with) 3.
423 424
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

425 426
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
427
Instance: Params (@difference_with) 3.
428
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
429

430 431 432 433
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

434 435 436 437
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
438
Class Injective {A B} (R : relation A) S (f : A  B) : Prop :=
439
  injective:  x y : A, S (f x) (f y)  R x y.
440
Class Idempotent {A} (R : relation A) (f : A  A  A) : Prop :=
441
  idempotent:  x, R (f x x) x.
442
Class Commutative {A B} (R : relation A) (f : B  B  A) : Prop :=
443
  commutative:  x y, R (f x y) (f y x).
444
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
445
  left_id:  x, R (f i x) x.
446
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
447
  right_id:  x, R (f x i) x.
448
Class Associative {A} (R : relation A) (f : A  A  A) : Prop :=
449
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
450
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
451
  left_absorb:  x, R (f i x) i.
452
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
453
  right_absorb:  x, R (f x i) i.
454 455 456 457 458
Class LeftDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  left_distr:  x y z, R (f x (g y z)) (g (f x y) (f x z)).
Class RightDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  right_distr:  y z x, R (f (g y z) x) (g (f y x) (f z x)).
Class AntiSymmetric {A} (R : relation A) : Prop :=
459
  anti_symmetric:  x y, R x y  R y x  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
460

461
Arguments irreflexivity {_} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
462 463 464 465 466 467
Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
468 469
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
470 471
Arguments left_distr {_ _} _ _ {_} _ _ _.
Arguments right_distr {_ _} _ _ {_} _ _ _.
472 473
Arguments anti_symmetric {_} _ {_} _ _ _ _.

474 475 476 477
Instance: Commutative () (@eq A).
Proof. red. intuition. Qed.
Instance: Commutative () (λ x y, @eq A y x).
Proof. red. intuition. Qed.
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: LeftId () True ().
Proof. red. intuition. Qed.
Instance: RightId () True ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red. intuition. Qed.
Instance: LeftId () False ().
Proof. red. intuition. Qed.
Instance: RightId () False ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red. intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red. intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red. intuition. Qed.
512 513 514 515 516 517 518 519
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
520

521 522 523
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
524 525
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
526
Proof. auto. Qed.
527 528
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
529
Proof. auto. Qed.
530 531
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
532
Proof. auto. Qed.
533 534
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
535
Proof. auto. Qed.
536 537
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
538
Proof. auto. Qed.
539 540 541 542 543 544
Lemma left_absorb_eq {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
  f i x = i.
Proof. auto. Qed.
Lemma right_absorb_eq {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
  f x i = i.
Proof. auto. Qed.
545 546 547 548 549 550
Lemma left_distr_eq {A} (f g : A  A  A) `{!LeftDistr (=) f g} x y z :
  f x (g y z) = g (f x y) (f x z).
Proof. auto. Qed.
Lemma right_distr_eq {A} (f g : A  A  A) `{!RightDistr (=) f g} y z x :
  f (g y z) x = g (f y x) (f z x).
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
551

552
(** ** Axiomatization of ordered structures *)
553 554
(** A pre-order equipped with a smallest element. *)
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
555 556 557
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.
558
Class PartialOrder A `{SubsetEq A} : Prop := {
559 560 561
  po_preorder :>> PreOrder ();
  po_antisym :> AntiSymmetric ()
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
562

563
(** We do not include equality in the following interfaces so as to avoid the
564
need for proofs that the relations and operations respect setoid equality.
565 566
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
567
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} : Prop := {
568
  bjsl_preorder :>> BoundedPreOrder A;
569 570
  union_subseteq_l x y : x  x  y;
  union_subseteq_r x y : y  x  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
571 572
  union_least x y z : x  z  y  z  x  y  z
}.
573
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
574
  msl_preorder :>> BoundedPreOrder A;
575 576
  intersection_subseteq_l x y : x  y  x;
  intersection_subseteq_r x y : x  y  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
577 578
  intersection_greatest x y z : z  x  z  y  z  x  y
}.
579 580 581 582

(** A join distributive lattice with distributivity stated in the order
theoretic way. We will prove that distributivity of join, and distributivity
as an equality can be derived. *)
583
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
584
    `{Union A} `{Intersection A} : Prop := {
585
  lbl_bjsl :>> BoundedJoinSemiLattice A;
586 587
  lbl_msl :>> MeetSemiLattice A;
  lbl_distr x y z : (x  y)  (x  z)  x  (y  z)
588
}.
589

590
(** ** Axiomatization of collections *)
591 592
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
593
Instance: Params (@map) 3.
594
Class SimpleCollection A C `{ElemOf A C}
595
    `{Empty C} `{Singleton A C} `{Union C} : Prop := {
596
  not_elem_of_empty (x : A) : x  ;
597
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
598 599 600
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class Collection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
601
    `{Union C} `{Intersection C} `{Difference C} : Prop := {
602
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
603
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
604 605 606 607 608 609 610
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class CollectionOps A C
    `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C}
    `{IntersectionWith A C} `{Filter A C} : Prop := {
  collection_ops :>> Collection A C;
611
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
612 613 614
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
  elem_of_filter X P `{ x, Decision (P x)} x :
    x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
615 616
}.

617 618 619
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
620
Class Elements A C := elements: C  list A.
621
Instance: Params (@elements) 3.
622 623 624 625 626 627 628 629 630 631 632 633 634 635

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
636 637
    `{Union C} `{Intersection C} `{Difference C}
    `{Elements A C} `{ x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
638
  fin_collection :>> Collection A C;
639
  elements_spec X x : x  X  x  elements X;
Robbert Krebbers's avatar
Robbert Krebbers committed
640
  elements_nodup X : NoDup (elements X)
641 642
}.
Class Size C := size: C  nat.
643
Arguments size {_ _} !_ / : simpl nomatch.
644
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
645

646 647 648 649 650 651 652 653 654 655
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class CollectionMonad M `{ A, ElemOf A (M A)}
    `{ A, Empty (M A)} `{ A, Singleton A (M A)} `{ A, Union (M A)}
656
    `{!MBind M} `{!MRet M} `{!FMap M} `{!MJoin M} : Prop := {
657 658 659 660 661 662 663 664 665 666 667
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
  elem_of_ret {A} (x y : A) :
    x  mret y  x = y;
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
  elem_of_join {A} (X : M (M A)) (x : A) :
    x  mjoin X   Y, x  Y  Y  X
}.

668 669 670
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
671
Class Fresh A C := fresh: C  A.
672
Instance: Params (@fresh) 3.
673
Class FreshSpec A C `{ElemOf A C}
674
    `{Empty C} `{Singleton A C} `{Union C} `{Fresh A C} : Prop := {
675
  fresh_collection_simple :>> SimpleCollection A C;
676
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
677 678 679
  is_fresh (X : C) : fresh X  X
}.

680 681 682
(** * Miscellaneous *)
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
683
Proof. injection 1; trivial. Qed.
684 685 686
Lemma not_symmetry `{R : relation A} `{!Symmetric R} (x y : A) :
  ¬R x y  ¬R y x.
Proof. intuition. Qed.
687 688 689 690
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

691 692 693
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
694 695 696 697 698 699 700 701 702 703
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

704
(** ** Products *)
705 706 707 708
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
Arguments fst_map {_ _ _} _ !_ /.
Arguments snd_map {_ _ _} _ !_ /.

Instance:  {A A' B} (f : A  A'),
  Injective (=) (=) f  Injective (=) (=) (@fst_map A A' B f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * apply (injective f). congruence.
  * congruence.
Qed.
Instance:  {A B B'} (f : B  B'),
  Injective (=) (=) f  Injective (=) (=) (@snd_map A B B' f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * congruence.
  * apply (injective f). congruence.
Qed.

727 728
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
729 730 731

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
732 733
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
734
  Proof. firstorder eauto. Qed.
735 736
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
737
  Proof. firstorder eauto. Qed.
738 739
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
740
  Proof. firstorder eauto. Qed.
741 742
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
743 744 745 746 747 748 749 750 751
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

752
(** ** Other *)
753
Definition proj_relation {A B} (R : relation A)
754
  (f : B  A) : relation B := λ x y, R (f x) (f y).
755 756 757
Definition proj_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (proj_relation R f).
Proof. unfold proj_relation. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
758 759

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
760
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
761
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
762
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
763
Instance:  A, Associative (=) (λ x _ : A, x).
764
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
765
Instance:  A, Associative (=) (λ _ x : A, x).
766
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
767
Instance:  A, Idempotent (=) (λ x _ : A, x).
768
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
769
Instance:  A, Idempotent (=) (λ _ x : A, x).
770
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
771

772 773
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
774
Proof. red. trivial. Qed.
775 776
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
777
Proof. red. trivial. Qed.
778 779 780 781 782 783
Instance left_absorb_propholds {A} (R : relation A) i f :
  LeftAbsorb R i f   x, PropHolds (R (f i x) i).
Proof. red. trivial. Qed.
Instance right_absorb_propholds {A} (R : relation A) i f :
  RightAbsorb R i f   x, PropHolds (R (f x i) i).
Proof. red. trivial. Qed.
784 785
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
786
Proof. red. trivial. Qed.