base.v 19.2 KB
Newer Older
1 2 3 4 5 6
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11 12 13 14 15
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

(** Ensure that [simpl] unfolds [id] and [compose] when fully applied. *)
16 17 18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.

19 20 21 22
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
23 24
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
25

26 27
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
28 29 30
Delimit Scope C_scope with C.
Global Open Scope C_scope.

31
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38 39 40
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

41 42 43
Notation "(→)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( T →)" := (λ y, T  y) (only parsing) : C_scope.
Notation "(→ T )" := (λ y, y  T) (only parsing) : C_scope.
44
Notation "t $ r" := (t r)
45
  (at level 65, right associativity, only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
46 47 48 49
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
50 51 52

(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
53 54 55
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

56 57 58 59
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
60 61
Class PropHolds (P : Prop) := prop_holds: P.

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
Proof. now repeat intro. Qed.

Ltac solve_propholds :=
  match goal with
  | [ |- PropHolds (?P) ] => apply _
  | [ |- ?P ] => change (PropHolds P); apply _
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
77 78 79
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

80 81 82
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
83 84 85 86 87 88 89 90 91 92
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

93 94 95 96 97 98 99 100
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102 103
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
Hint Extern 0 (?x  ?x) => reflexivity.

104 105 106 107 108
(** ** Operations on collections *)
(** We define operational type classes for the standard operations and
relations on collections: the empty collection [∅], the union [(∪)],
intersection [(∩)], difference [(∖)], and the singleton [{[_]}]
operation, and the subset [(⊆)] and element of [(∈)] relation. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
109 110 111 112
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
113
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
114 115 116 117 118 119
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

Class Intersection A := intersection: A  A  A.
120
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
121 122 123 124 125 126
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
127
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
128 129 130 131 132
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

133 134 135 136 137 138
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
139
Class SubsetEq A := subseteq: A  A  Prop.
140
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
141 142 143 144 145 146 147 148 149 150 151 152
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

Hint Extern 0 (?x  ?x) => reflexivity.

Class ElemOf A B := elem_of: A  B  Prop.
153
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
154 155 156 157 158 159 160 161 162
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

163
(** ** Operations on maps *)
164 165
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
166
The function lookup [m !! k] should yield the element at key [k] in [m]. *)
167 168
Class Lookup (K : Type) (M : Type  Type) :=
  lookup:  {A}, K  M A  option A.
169 170 171 172 173 174 175 176 177
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
178
Class Insert (K : Type) (M : Type  Type) :=
179 180 181 182 183
  insert:  {A}, K  A  M A  M A.
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.

184 185 186 187 188 189
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
Class Delete (K : Type) (M : Type  Type) :=
  delete:  {A}, K  M A  M A.
Instance: Params (@delete) 4.
190 191

(** The function [alter f k m] should update the value at key [k] using the
192 193
function [f], which is called with the original value. *)
Class Alter (K : Type) (M : Type  Type) :=
194 195 196 197
  alter:  {A}, (A  A)  K  M A  M A.
Instance: Params (@alter) 4.

(** The function [alter f k m] should update the value at key [k] using the
198 199 200 201
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
Class PartialAlter (K : Type) (M : Type  Type) :=
202 203 204 205 206
  partial_alter:  {A}, (option A  option A)  K  M A  M A.
Instance: Params (@partial_alter) 4.

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
207 208 209
Class Dom (K : Type) (M : Type  Type) :=
  dom:  {A} C `{Empty C} `{Union C} `{Singleton K C}, M A  C.
Instance: Params (@dom) 8.
210 211 212 213

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)]
provided that [k] is a member of either [m1] or [m2].*)
214
Class Merge (M : Type  Type) :=
215 216 217 218 219 220 221
  merge:  {A}, (option A  option A  option A)  M A  M A  M A.
Instance: Params (@merge) 3.

(** We lift the insert and delete operation to lists of elements. *)
Definition insert_list `{Insert K M} {A} (l : list (K * A)) (m : M A) : M A :=
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
222
Definition delete_list `{Delete K M} {A} (l : list K) (m : M A) : M A :=
223
  fold_right delete m l.
224
Instance: Params (@delete_list) 4.
225 226 227 228

(** The function [union_with f m1 m2] should yield the union of [m1] and [m2]
using the function [f] to combine values of members that are in both [m1] and
[m2]. *)
229
Class UnionWith (M : Type  Type) :=
230
  union_with:  {A}, (A  A  A)  M A  M A  M A.
231 232 233
Instance: Params (@union_with) 3.

(** Similarly for the intersection and difference. *)
234
Class IntersectionWith (M : Type  Type) :=
235
  intersection_with:  {A}, (A  A  A)  M A  M A  M A.
236
Instance: Params (@intersection_with) 3.
237
Class DifferenceWith (M : Type  Type) :=
238
  difference_with:  {A}, (A  A  option A)  M A  M A  M A.
239
Instance: Params (@difference_with) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
240

241 242 243 244
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
245 246 247 248 249 250 251 252 253 254 255 256
Class Injective {A B} R S (f : A  B) :=
  injective:  x y : A, S (f x) (f y)  R x y.
Class Idempotent {A} R (f : A  A  A) :=
  idempotent:  x, R (f x x) x.
Class Commutative {A B} R (f : B  B  A) :=
  commutative:  x y, R (f x y) (f y x).
Class LeftId {A} R (i : A) (f : A  A  A) :=
  left_id:  x, R (f i x) x.
Class RightId {A} R (i : A) (f : A  A  A) :=
  right_id:  x, R (f x i) x.
Class Associative {A} R (f : A  A  A) :=
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
Robbert Krebbers's avatar
Robbert Krebbers committed
257 258 259 260 261 262 263 264

Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.

265 266 267
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
268 269
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
270
Proof. auto. Qed.
271 272
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
273
Proof. auto. Qed.
274 275
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
276
Proof. auto. Qed.
277 278
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
279
Proof. auto. Qed.
280 281
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
282 283
Proof. auto. Qed.

284 285 286 287
(** ** Monadic operations *)
(** We do use the operation type classes for monads merely for convenient
overloading of notations and do not formalize any theory on monads (we do not
define a class with the monad laws). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
288 289 290 291 292 293 294 295 296
Section monad_ops.
  Context (M : Type  Type).

  Class MRet := mret:  {A}, A  M A.
  Class MBind := mbind:  {A B}, (A  M B)  M A  M B.
  Class MJoin := mjoin:  {A}, M (M A)  M A.
  Class FMap := fmap:  {A B}, (A  B)  M A  M B.
End monad_ops.

297
Instance: Params (@mret) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
298
Arguments mret {M MRet A} _.
299
Instance: Params (@mbind) 4.
Robbert Krebbers's avatar
Robbert Krebbers committed
300
Arguments mbind {M MBind A B} _ _.
301
Instance: Params (@mjoin) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
302
Arguments mjoin {M MJoin A} _.
303
Instance: Params (@fmap) 4.
Robbert Krebbers's avatar
Robbert Krebbers committed
304 305 306
Arguments fmap {M FMap A B} _ _.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
307 308
Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, next at level 35, right associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
309 310
Infix "<$>" := fmap (at level 65, right associativity, only parsing) : C_scope.

311 312
(** ** Axiomatization of ordered structures *)
(** A pre-order equiped with a smallest element. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
313 314 315 316 317
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} := {
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.

318 319 320 321
(** We do not include equality in the following interfaces so as to avoid the
need for proofs that the  relations and operations respect setoid equality.
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
322 323 324 325 326 327 328 329 330 331 332 333 334
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} := {
  jsl_preorder :>> BoundedPreOrder A;
  subseteq_union_l x y : x  x  y;
  subseteq_union_r x y : y  x  y;
  union_least x y z : x  z  y  z  x  y  z
}.
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} := {
  msl_preorder :>> BoundedPreOrder A;
  subseteq_intersection_l x y : x  y  x;
  subseteq_intersection_r x y : x  y  y;
  intersection_greatest x y z : z  x  z  y  z  x  y
}.

335 336 337 338
(** ** Axiomatization of collections *)
(** The class [Collection A C] axiomatizes a collection of type [C] with
elements of type [A]. Since [C] is not dependent on [A], we use the monomorphic
[Map] type class instead of the polymorphic [FMap]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
339
Class Map A C := map: (A  A)  (C  C).
340 341
Instance: Params (@map) 3.
Class Collection A C `{ElemOf A C} `{Empty C} `{Union C}
Robbert Krebbers's avatar
Robbert Krebbers committed
342
    `{Intersection C} `{Difference C} `{Singleton A C} `{Map A C} := {
343
  not_elem_of_empty (x : A) : x  ;
344
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
Robbert Krebbers's avatar
Robbert Krebbers committed
345 346 347 348 349 350
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_map f X (x : A) : x  map f X   y, x = f y  y  X
}.

351 352 353
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
354
Class Elements A C := elements: C  list A.
355 356
Instance: Params (@elements) 3.
Class FinCollection A C `{Empty C} `{Union C} `{Intersection C} `{Difference C}
Robbert Krebbers's avatar
Robbert Krebbers committed
357 358 359 360
    `{Singleton A C} `{ElemOf A C} `{Map A C} `{Elements A C} := {
  fin_collection :>> Collection A C;
  elements_spec X x : x  X  In x (elements X);
  elements_nodup X : NoDup (elements X)
361 362 363
}.
Class Size C := size: C  nat.
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
364

365 366 367
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
368
Class Fresh A C := fresh: C  A.
369
Instance: Params (@fresh) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
370
Class FreshSpec A C `{!Fresh A C} `{!ElemOf A C} := {
371
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
372 373 374
  is_fresh (X : C) : fresh X  X
}.

375 376 377 378
(** * Miscellaneous *)
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
Proof. now injection 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
379

380 381 382 383
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

384 385 386
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
387 388 389 390 391 392 393 394 395 396
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

397
(** ** Products *)
398 399 400 401 402 403
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
404 405 406

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
407 408
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
409
  Proof. firstorder eauto. Qed.
410 411
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
412
  Proof. firstorder eauto. Qed.
413 414
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
415
  Proof. firstorder eauto. Qed.
416 417
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
418 419 420 421 422 423 424 425 426
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

427
(** ** Other *)
428 429
Definition lift_relation {A B} (R : relation A)
  (f : B  A) : relation B := λ x y, R (f x) (f y).
Robbert Krebbers's avatar
Robbert Krebbers committed
430 431 432
Definition lift_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (lift_relation R f).
Proof. unfold lift_relation. firstorder. Qed.
433 434
Hint Extern 0 (Equivalence (lift_relation _ _)) =>
  eapply @lift_relation_equivalence : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
435 436 437 438 439 440 441 442 443 444 445 446 447 448

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
Proof. easy. Qed.
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
Proof. easy. Qed.
Instance:  A, Associative (=) (λ x _ : A, x).
Proof. easy. Qed.
Instance:  A, Associative (=) (λ _ x : A, x).
Proof. easy. Qed.
Instance:  A, Idempotent (=) (λ x _ : A, x).
Proof. easy. Qed.
Instance:  A, Idempotent (=) (λ _ x : A, x).
Proof. easy. Qed.

449 450
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
451
Proof. easy. Qed.
452 453
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
454
Proof. easy. Qed.
455 456
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
457
Proof. easy. Qed.