base.v 48.2 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Global Generalizable All Variables.
8
From Coq Require Export Morphisms RelationClasses List Bool Utf8 Setoid.
9
Set Default Proof Using "Type".
10 11
Export ListNotations.
From Coq.Program Require Export Basics Syntax.
12

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
(** * Tweak program *)
(** 1. Since we only use Program to solve logical side-conditions, they should
always be made Opaque, otherwise we end up with performance problems due to
Coq blindly unfolding them.

Note that in most cases we use [Next Obligation. (* ... *) Qed.], for which
this option does not matter. However, sometimes we write things like
[Solve Obligations with naive_solver (* ... *)], and then the obligations
should surely be opaque. *)
Global Unset Transparent Obligations.

(** 2. Do not let Program automatically simplify obligations. The default
obligation tactic is [Tactics.program_simpl], which, among other things,
introduces all variables and gives them fresh names. As such, it becomes
impossible to refer to hypotheses in a robust way. *)
28
Obligation Tactic := idtac.
29 30

(** 3. Hide obligations from the results of the [Search] commands. *)
31
Add Search Blacklist "_obligation_".
Robbert Krebbers's avatar
Robbert Krebbers committed
32

33
(** * Sealing off definitions *)
Ralf Jung's avatar
Ralf Jung committed
34 35 36 37
Section seal.
  Local Set Primitive Projections.
  Record seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }.
End seal.
Ralf Jung's avatar
Ralf Jung committed
38 39
Arguments unseal {_ _} _ : assert.
Arguments seal_eq {_ _} _ : assert.
40

41
(** * Typeclass opaque definitions *)
42 43 44 45 46 47
(* The constant [tc_opaque] is used to make definitions opaque for just type
class search. Note that [simpl] is set up to always unfold [tc_opaque]. *)
Definition tc_opaque {A} (x : A) : A := x.
Typeclasses Opaque tc_opaque.
Arguments tc_opaque {_} _ /.

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
(* Below we define type class versions of the common logical operators. It is
important to note that we duplicate the definitions, and do not declare the
existing logical operators as type classes. That is, we do not say:

  Existing Class or.
  Existing Class and.

If we could define the existing logical operators as classes, there is no way
of disambiguating whether a premise of a lemma should be solved by type class
resolution or not.

These classes are useful for two purposes: writing complicated type class
premises in a more concise way, and for efficiency. For example, using the [Or]
class, instead of defining two instances [P → Q1 → R] and [P → Q2 → R] we could
have one instance [P → Or Q1 Q2 → R]. When we declare the instance that way, we
avoid the need to derive [P] twice. *)
64
Inductive TCOr (P1 P2 : Prop) : Prop :=
65 66 67 68 69
  | TCOr_l : P1  TCOr P1 P2
  | TCOr_r : P2  TCOr P1 P2.
Existing Class TCOr.
Existing Instance TCOr_l | 9.
Existing Instance TCOr_r | 10.
Robbert Krebbers's avatar
Robbert Krebbers committed
70

71
Inductive TCAnd (P1 P2 : Prop) : Prop := TCAnd_intro : P1  P2  TCAnd P1 P2.
72 73
Existing Class TCAnd.
Existing Instance TCAnd_intro.
74

75 76 77
Inductive TCTrue : Prop := TCTrue_intro : TCTrue.
Existing Class TCTrue.
Existing Instance TCTrue_intro.
78

79 80 81 82 83 84 85
Inductive TCForall {A} (P : A  Prop) : list A  Prop :=
  | TCForall_nil : TCForall P []
  | TCForall_cons x xs : P x  TCForall P xs  TCForall P (x :: xs).
Existing Class TCForall.
Existing Instance TCForall_nil.
Existing Instance TCForall_cons.

86 87 88 89
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Delimit Scope C_scope with C.
Global Open Scope C_scope.
90

91
(** Change [True] and [False] into notations in order to enable overloading.
92 93
We will use this to give [True] and [False] a different interpretation for
embedded logics. *)
94 95
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
96 97


98
(** * Equality *)
99
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
100 101 102 103 104 105 106
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

107
Hint Extern 0 (_ = _) => reflexivity.
108
Hint Extern 100 (_  _) => discriminate.
Robbert Krebbers's avatar
Robbert Krebbers committed
109

110 111 112 113 114 115 116
Instance: @PreOrder A (=).
Proof. split; repeat intro; congruence. Qed.

(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Class Equiv A := equiv: relation A.
117 118 119
(* No Hint Mode set because of Coq bug #5735
Hint Mode Equiv ! : typeclass_instances. *)

120 121 122 123 124 125 126 127 128 129 130 131 132 133
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( X ≡)" := (equiv X) (only parsing) : C_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : C_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : C_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : C_scope.

(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
134 135
Hint Mode LeibnizEquiv ! - : typeclass_instances.

136 137 138
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@equiv A _)} (x y : A) :
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv_iff (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
  end.

Definition equivL {A} : Equiv A := (=).

(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.


(** * Type classes *)
(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
173
propositions. *)
174
Class Decision (P : Prop) := decide : {P} + {¬P}.
175
Hint Mode Decision ! : typeclass_instances.
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
Arguments decide _ {_} : simpl never, assert.

(** Although [RelDecision R] is just [∀ x y, Decision (R x y)], we make this
an explicit class instead of a notation for two reasons:

- It allows us to control [Hint Mode] more precisely. In particular, if it were
  defined as a notation, the above [Hint Mode] for [Decision] would not prevent
  diverging instance search when looking for [RelDecision (@eq ?A)], which would
  result in it looking for [Decision (@eq ?A x y)], i.e. an instance where the
  head position of [Decision] is not en evar.
- We use it to avoid inefficient computation due to eager evaluation of
  propositions by [vm_compute]. This inefficiency arises for example if
  [(x = y) := (f x = f y)]. Since [decide (x = y)] evaluates to
  [decide (f x = f y)], this would then lead to evaluation of [f x] and [f y].
  Using the [RelDecision], the [f] is hidden under a lambda, which prevents
  unnecessary evaluation. *)
Class RelDecision {A B} (R : A  B  Prop) :=
  decide_rel x y :> Decision (R x y).
Hint Mode RelDecision ! ! ! : typeclass_instances.
Arguments decide_rel {_ _} _ {_} _ _ : simpl never, assert.
Notation EqDecision A := (RelDecision (@eq A)).
197 198 199 200

(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
201
Hint Mode Inhabited ! : typeclass_instances.
202
Arguments populate {_} _ : assert.
203 204 205 206 207 208

(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.
209
Hint Mode ProofIrrel ! : typeclass_instances.
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [inj (k ++)] instead of [app_inv_head k]. *)
Class Inj {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  inj x y : S (f x) (f y)  R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel :  x, S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A  B) :=
  surj y :  x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A  A  A) : Prop :=
  idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B  B  A) : Prop :=
  comm x y : R (f x y) (f y x).
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_id x : R (f i x) x.
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A  A  A) : Prop :=
  assoc x y z : R (f x (f y z)) (f (f x y) z).
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_absorb x : R (f i x) i.
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
  anti_symm x y : S x y  S y x  R x y.
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
  trichotomy x y : R x y  x = y  R y x.
Class TrichotomyT {A} (R : relation A) :=
  trichotomyT x y : {R x y} + {x = y} + {R y x}.

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
Arguments irreflexivity {_} _ {_} _ _ : assert.
Arguments inj {_ _ _ _} _ {_} _ _ _ : assert.
Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _: assert.
Arguments cancel {_ _ _} _ _ {_} _ : assert.
Arguments surj {_ _ _} _ {_} _ : assert.
Arguments idemp {_ _} _ {_} _ : assert.
Arguments comm {_ _ _} _ {_} _ _ : assert.
Arguments left_id {_ _} _ _ {_} _ : assert.
Arguments right_id {_ _} _ _ {_} _ : assert.
Arguments assoc {_ _} _ {_} _ _ _ : assert.
Arguments left_absorb {_ _} _ _ {_} _ : assert.
Arguments right_absorb {_ _} _ _ {_} _ : assert.
Arguments anti_symm {_ _} _ {_} _ _ _ _ : assert.
Arguments total {_} _ {_} _ _ : assert.
Arguments trichotomy {_} _ {_} _ _ : assert.
Arguments trichotomyT {_} _ {_} _ _ : assert.
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y  ¬R y x.
Proof. intuition. Qed.
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
Proof. intuition. Qed.

Lemma not_inj `{Inj A B R R' f} x y : ¬R x y  ¬R' (f x) (f y).
Proof. intuition. Qed.
Lemma not_inj2_1 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R x1 x2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.
Lemma not_inj2_2 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R' y1 y2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR' HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.

Lemma inj_iff {A B} {R : relation A} {S : relation B} (f : A  B)
  `{!Inj R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y)  R x y.
Proof. firstorder. Qed.
Instance inj2_inj_1 `{Inj2 A B C R1 R2 R3 f} y : Inj R1 R3 (λ x, f x y).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
Instance inj2_inj_2 `{Inj2 A B C R1 R2 R3 f} x : Inj R2 R3 (f x).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.

Lemma cancel_inj `{Cancel A B R1 f g, !Equivalence R1, !Proper (R2 ==> R1) f} :
  Inj R1 R2 g.
Proof.
  intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity.
Qed.
Lemma cancel_surj `{Cancel A B R1 f g} : Surj R1 f.
Proof. intros y. exists (g y). auto. Qed.

(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idemp_L {A} f `{!@IdemP A (=) f} x : f x x = x.
Proof. auto. Qed.
Lemma comm_L {A B} f `{!@Comm A B (=) f} x y : f x y = f y x.
Proof. auto. Qed.
Lemma left_id_L {A} i f `{!@LeftId A (=) i f} x : f i x = x.
Proof. auto. Qed.
Lemma right_id_L {A} i f `{!@RightId A (=) i f} x : f x i = x.
Proof. auto. Qed.
Lemma assoc_L {A} f `{!@Assoc A (=) f} x y z : f x (f y z) = f (f x y) z.
Proof. auto. Qed.
Lemma left_absorb_L {A} i f `{!@LeftAbsorb A (=) i f} x : f i x = i.
Proof. auto. Qed.
Lemma right_absorb_L {A} i f `{!@RightAbsorb A (=) i f} x : f x i = i.
Proof. auto. Qed.

(** ** Generic orders *)
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
Class PartialOrder {A} (R : relation A) : Prop := {
  partial_order_pre :> PreOrder R;
  partial_order_anti_symm :> AntiSymm (=) R
}.
Class TotalOrder {A} (R : relation A) : Prop := {
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
}.

(** * Logic *)
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Lemma or_l P Q : ¬Q  P  Q  P.
Proof. tauto. Qed.
Lemma or_r P Q : ¬P  P  Q  Q.
Proof. tauto. Qed.
Lemma and_wlog_l (P Q : Prop) : (Q  P)  Q  (P  Q).
Proof. tauto. Qed.
Lemma and_wlog_r (P Q : Prop) : P  (P  Q)  (P  Q).
Proof. tauto. Qed.
Lemma impl_transitive (P Q R : Prop) : (P  Q)  (Q  R)  (P  R).
Proof. tauto. Qed.
351 352 353 354 355 356
Lemma forall_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
Lemma exist_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

Instance: Comm () (@eq A).
Proof. red; intuition. Qed.
Instance: Comm () (λ x y, @eq A y x).
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: LeftId () True ().
Proof. red; intuition. Qed.
Instance: RightId () True ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red; intuition. Qed.
Instance: LeftId () False ().
Proof. red; intuition. Qed.
Instance: RightId () False ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red; intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red; intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red; intuition. Qed.


(** * Common data types *)
(** ** Functions *)
400 401 402 403
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

404
Notation "t $ r" := (t r)
405
  (at level 65, right associativity, only parsing) : C_scope.
406 407 408
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
409 410 411 412
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
413

Robbert Krebbers's avatar
Robbert Krebbers committed
414 415 416
Instance impl_inhabited {A} `{Inhabited B} : Inhabited (A  B) :=
  populate (λ _, inhabitant).

417 418
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
419 420 421 422
Arguments id _ _ / : assert.
Arguments compose _ _ _ _ _ _ / : assert.
Arguments flip _ _ _ _ _ _ / : assert.
Arguments const _ _ _ _ / : assert.
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
Typeclasses Transparent id compose flip const.

Definition fun_map {A A' B B'} (f: A'  A) (g: B  B') (h : A  B) : A'  B' :=
  g  h  f.

Instance const_proper `{R1 : relation A, R2 : relation B} (x : B) :
  Reflexive R2  Proper (R1 ==> R2) (λ _, x).
Proof. intros ? y1 y2; reflexivity. Qed.

Instance id_inj {A} : Inj (=) (=) (@id A).
Proof. intros ??; auto. Qed.
Instance compose_inj {A B C} R1 R2 R3 (f : A  B) (g : B  C) :
  Inj R1 R2 f  Inj R2 R3 g  Inj R1 R3 (g  f).
Proof. red; intuition. Qed.

Instance id_surj {A} : Surj (=) (@id A).
Proof. intros y; exists y; reflexivity. Qed.
Instance compose_surj {A B C} R (f : A  B) (g : B  C) :
  Surj (=) f  Surj R g  Surj R (g  f).
Proof.
  intros ?? x. unfold compose. destruct (surj g x) as [y ?].
  destruct (surj f y) as [z ?]. exists z. congruence.
Qed.

Instance id_comm {A B} (x : B) : Comm (=) (λ _ _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance id_assoc {A} (x : A) : Assoc (=) (λ _ _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_assoc {A} : Assoc (=) (λ x _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const2_assoc {A} : Assoc (=) (λ _ x : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_idemp {A} : IdemP (=) (λ x _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance const2_idemp {A} : IdemP (=) (λ _ x : A, x).
Proof. intros ?; reflexivity. Qed.

(** ** Lists *)
Instance list_inhabited {A} : Inhabited (list A) := populate [].

Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).

(** ** Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
Hint Unfold Is_true.
Hint Immediate Is_true_eq_left.
Hint Resolve orb_prop_intro andb_prop_intro.
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).

Instance bool_inhabated : Inhabited bool := populate true.
480

481 482 483 484 485
Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.
486

487 488 489 490 491 492 493 494
Lemma andb_True b1 b2 : b1 && b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b  ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_false (b : bool) : b = false  ¬b.
Proof. now intros -> ?. Qed.
495

496 497 498 499
(** ** Unit *)
Instance unit_equiv : Equiv unit := λ _ _, True.
Instance unit_equivalence : Equivalence (@equiv unit _).
Proof. repeat split. Qed.
500 501
Instance unit_leibniz : LeibnizEquiv unit.
Proof. intros [] []; reflexivity. Qed.
502
Instance unit_inhabited: Inhabited unit := populate ().
503

504
(** ** Products *)
505 506 507 508 509 510
Notation "( x ,)" := (pair x) (only parsing) : C_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : C_scope.

Notation "p .1" := (fst p) (at level 10, format "p .1").
Notation "p .2" := (snd p) (at level 10, format "p .2").

511
Instance: Params (@pair) 2.
512 513
Instance: Params (@fst) 2.
Instance: Params (@snd) 2.
514

515 516 517 518 519 520 521
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.

522 523 524 525 526
Definition uncurry3 {A B C D} (f : A * B * C  D) (a : A) (b : B) (c : C) : D :=
  f (a, b, c).
Definition uncurry4 {A B C D E} (f : A * B * C * D  E)
  (a : A) (b : B) (c : C) (d : D) : E := f (a, b, c, d).

527 528
Definition prod_map {A A' B B'} (f: A  A') (g: B  B') (p : A * B) : A' * B' :=
  (f (p.1), g (p.2)).
529
Arguments prod_map {_ _ _ _} _ _ !_ / : assert.
530

531 532
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
533
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ / : assert.
534

535 536 537
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with populate x, populate y => populate (x,y) end.
538

539 540 541 542 543 544 545 546
Instance pair_inj : Inj2 (=) (=) (=) (@pair A B).
Proof. injection 1; auto. Qed.
Instance prod_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (prod_map f g).
Proof.
  intros ?? [??] [??] ?; simpl in *; f_equal;
    [apply (inj f)|apply (inj g)]; congruence.
Qed.
547

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (x.1) (y.1)  R2 (x.2) (y.2).
Section prod_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance prod_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_trans :
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
  Proof. split; apply _. Qed.
564

565 566
  Global Instance pair_proper' : Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
567 568
  Global Instance pair_inj' : Inj2 R1 R2 (prod_relation R1 R2) pair.
  Proof. inversion_clear 1; eauto. Qed.
569 570 571 572 573
  Global Instance fst_proper' : Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance snd_proper' : Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.
Robbert Krebbers's avatar
Robbert Krebbers committed
574

575 576
Instance prod_equiv `{Equiv A,Equiv B} : Equiv (A * B) := prod_relation () ().
Instance pair_proper `{Equiv A, Equiv B} :
577 578
  Proper (() ==> () ==> ()) (@pair A B) := _.
Instance pair_equiv_inj `{Equiv A, Equiv B} : Inj2 () () () (@pair A B) := _.
579 580 581
Instance fst_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@fst A B) := _.
Instance snd_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@snd A B) := _.
Typeclasses Opaque prod_equiv.
582

Robbert Krebbers's avatar
Robbert Krebbers committed
583 584
Instance prod_leibniz `{LeibnizEquiv A, LeibnizEquiv B} : LeibnizEquiv (A * B).
Proof. intros [??] [??] [??]; f_equal; apply leibniz_equiv; auto. Qed.
585

586
(** ** Sums *)
587 588
Definition sum_map {A A' B B'} (f: A  A') (g: B  B') (xy : A + B) : A' + B' :=
  match xy with inl x => inl (f x) | inr y => inr (g y) end.
589
Arguments sum_map {_ _ _ _} _ _ !_ / : assert.
590

591
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
592
  match iA with populate x => populate (inl x) end.
593
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
594
  match iB with populate y => populate (inl y) end.
595

596 597 598 599
Instance inl_inj : Inj (=) (=) (@inl A B).
Proof. injection 1; auto. Qed.
Instance inr_inj : Inj (=) (=) (@inr A B).
Proof. injection 1; auto. Qed.
600

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
Instance sum_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (sum_map f g).
Proof. intros ?? [?|?] [?|?] [=]; f_equal; apply (inj _); auto. Qed.

Inductive sum_relation {A B}
     (R1 : relation A) (R2 : relation B) : relation (A + B) :=
  | inl_related x1 x2 : R1 x1 x2  sum_relation R1 R2 (inl x1) (inl x2)
  | inr_related y1 y2 : R2 y1 y2  sum_relation R1 R2 (inr y1) (inr y2).

Section sum_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance sum_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (sum_relation R1 R2).
  Proof. intros ?? [?|?]; constructor; reflexivity. Qed.
  Global Instance sum_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (sum_relation R1 R2).
  Proof. destruct 3; constructor; eauto. Qed.
  Global Instance sum_relation_trans :
    Transitive R1  Transitive R2  Transitive (sum_relation R1 R2).
  Proof. destruct 3; inversion_clear 1; constructor; eauto. Qed.
  Global Instance sum_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (sum_relation R1 R2).
  Proof. split; apply _. Qed.
  Global Instance inl_proper' : Proper (R1 ==> sum_relation R1 R2) inl.
  Proof. constructor; auto. Qed.
  Global Instance inr_proper' : Proper (R2 ==> sum_relation R1 R2) inr.
  Proof. constructor; auto. Qed.
628 629 630 631
  Global Instance inl_inj' : Inj R1 (sum_relation R1 R2) inl.
  Proof. inversion_clear 1; auto. Qed.
  Global Instance inr_inj' : Inj R2 (sum_relation R1 R2) inr.
  Proof. inversion_clear 1; auto. Qed.
632 633 634 635 636
End sum_relation.

Instance sum_equiv `{Equiv A, Equiv B} : Equiv (A + B) := sum_relation () ().
Instance inl_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inl A B) := _.
Instance inr_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inr A B) := _.
637 638
Instance inl_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inl A B) := _.
Instance inr_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inr A B) := _.
639 640
Typeclasses Opaque sum_equiv.

641 642
(** ** Option *)
Instance option_inhabited {A} : Inhabited (option A) := populate None.
Robbert Krebbers's avatar
Robbert Krebbers committed
643

644
(** ** Sigma types *)
645 646 647
Arguments existT {_ _} _ _ : assert.
Arguments projT1 {_ _} _ : assert.
Arguments projT2 {_ _} _ : assert.
648

649 650 651
Arguments exist {_} _ _ _ : assert.
Arguments proj1_sig {_ _} _ : assert.
Arguments proj2_sig {_ _} _ : assert.
652 653
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : C_scope.
654

655 656 657
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
Proof. injection 1; trivial. Qed.
658

659 660 661 662 663 664 665 666 667 668
Section sig_map.
  Context `{P : A  Prop} `{Q : B  Prop} (f : A  B) (Hf :  x, P x  Q (f x)).
  Definition sig_map (x : sig P) : sig Q := f (`x)  Hf _ (proj2_sig x).
  Global Instance sig_map_inj:
    ( x, ProofIrrel (P x))  Inj (=) (=) f  Inj (=) (=) sig_map.
  Proof.
    intros ?? [x Hx] [y Hy]. injection 1. intros Hxy.
    apply (inj f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto.
  Qed.
End sig_map.
669
Arguments sig_map _ _ _ _ _ _ !_ / : assert.
670

Robbert Krebbers's avatar
Robbert Krebbers committed
671

672
(** * Operations on collections *)
673
(** We define operational type classes for the traditional operations and
674
relations on collections: the empty collection [∅], the union [(∪)],
675 676
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
677
Class Empty A := empty: A.
678
Hint Mode Empty ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
679 680
Notation "∅" := empty : C_scope.

681 682
Instance empty_inhabited `(Empty A) : Inhabited A := populate .

683
Class Top A := top : A.
684
Hint Mode Top ! : typeclass_instances.
685 686
Notation "⊤" := top : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
687
Class Union A := union: A  A  A.
688
Hint Mode Union ! : typeclass_instances.
689
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
690 691 692 693
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.
694 695 696 697 698 699
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : C_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∪**" := (zip_with (zip_with ()))
  (at level 50, left associativity) : C_scope.
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
700

701
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
702
Arguments union_list _ _ _ !_ / : assert.
703 704
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
705
Class Intersection A := intersection: A  A  A.
706
Hint Mode Intersection ! : typeclass_instances.
707
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
708 709 710 711 712 713
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
714
Hint Mode Difference ! : typeclass_instances.
715
Instance: Params (@difference) 2.
716
Infix "∖" := difference (at level 40, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
717 718 719
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.
720 721 722 723 724 725
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : C_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∖**" := (zip_with (zip_with ()))
  (at level 40, left associativity) : C_scope.
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
726

727
Class Singleton A B := singleton: A  B.
728
Hint Mode Singleton - ! : typeclass_instances.
729
Instance: Params (@singleton) 3.
730
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
731
Notation "{[ x ; y ; .. ; z ]}" :=
732 733 734 735 736 737
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
738

739
Class SubsetEq A := subseteq: relation A.
740
Hint Mode SubsetEq ! : typeclass_instances.
741
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
742 743
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
744 745
Notation "( X ⊆)" := (subseteq X) (only parsing) : C_scope.
Notation "(⊆ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
746 747
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
748 749
Notation "( X ⊈)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
750 751 752 753 754 755 756
Infix "⊆*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
757

758
Hint Extern 0 (_  _) => reflexivity.
759 760 761 762 763
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

Infix "⊂" := (strict ()) (at level 70) : C_scope.
Notation "(⊂)" := (strict ()) (only parsing) : C_scope.
764 765 766
Notation "( X ⊂)" := (strict () X) (only parsing) : C_scope.
Notation "(⊂ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "X ⊄ Y" := (¬X  Y) (at level 70) : C_scope.
767
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
768 769
Notation "( X ⊄)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
770

771 772 773 774 775
Notation "X ⊆ Y ⊆ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : C_scope.
Notation "X ⊆ Y ⊂ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : C_scope.
Notation "X ⊂ Y ⊆ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : C_scope.
Notation "X ⊂ Y ⊂ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : C_scope.

776 777 778 779
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.
780
Hint Mode Lexico ! : typeclass_instances.
781

Robbert Krebbers's avatar
Robbert Krebbers committed
782
Class ElemOf A B := elem_of: A  B  Prop.
783
Hint Mode ElemOf - ! : typeclass_instances.
784
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
785 786 787 788 789 790 791 792 793
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
794
Class Disjoint A := disjoint : A  A  Prop.
795
Hint Mode Disjoint ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
796 797 798
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
799
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
800
Notation "(.⊥ X )" := (λ Y, Y  X) (only parsing) : C_scope.
801 802 803 804 805 806 807 808 809 810 811
Infix "⊥*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊥*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊥**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊥1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊥2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊥1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊥2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Hint Extern 0 (_ * _) => symmetry; eassumption.

Class DisjointE E A := disjointE : E  A  A  Prop.
812
Hint Mode DisjointE - ! : typeclass_instances.
813 814 815 816 817 818 819 820 821 822 823 824 825 826
Instance: Params (@disjointE) 4.
Notation "X ⊥{ Γ } Y" := (disjointE Γ X Y)
  (at level 70, format "X  ⊥{ Γ }  Y") : C_scope.
Notation "(⊥{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊥{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ }*  Ys") : C_scope.
Notation "(⊥{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊥{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "X  ⊥{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "Xs ⊥{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : C_scope.
Hint Extern 0 (_ {_} _) => symmetry; eassumption.
827 828

Class DisjointList A := disjoint_list : list A  Prop.
829
Hint Mode DisjointList ! : typeclass_instances.
830
Instance: Params (@disjoint_list) 2.
831
Notation "⊥ Xs" := (disjoint_list Xs) (at level 20, format "⊥  Xs") : C_scope.
832

833 834
Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
835 836
  Implicit Types X : A.

837 838 839 840
  Inductive disjoint_list_default : DisjointList A :=
    | disjoint_nil_2 :  (@nil A)
    | disjoint_cons_2 (X : A) (Xs : list A) : X   Xs   Xs   (X :: Xs).
  Global Existing Instance disjoint_list_default.
841

842
  Lemma disjoint_list_nil  :  @nil A  True.
843 844 845
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
846
End disjoint_list.
847 848

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
849
Hint Mode Filter - ! : typeclass_instances.
850

851
Class UpClose A B := up_close : A  B.
852
Hint Mode UpClose - ! : typeclass_instances.
853
Notation "↑ x" := (up_close x) (at level 20, format "↑ x").
854 855

(** * Monadic operations *)
856
(** We define operational type classes for the monadic operations bind, join 
857 858 859
and fmap. We use these type classes merely for convenient overloading of
notations and do not formalize any theory on monads (we do not even define a
class with the monad laws). *)
860
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
861
Arguments mret {_ _ _} _ : assert.
862
Instance: Params (@mret) 3.
863
Class MBind (M : Type  Type) := mbind :  {A B}, (A  M B)  M A  M B.
864
Arguments mbind {_ _ _ _} _ !_ / : assert.
865
Instance: Params (@mbind) 4.
866
Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
867
Arguments mjoin {_ _ _} !_ / : assert.
868
Instance: Params (@mjoin) 3.
869
Class FMap (M : Type  Type) := fmap :  {A B}, (A  B)  M A  M B.
870
Arguments fmap {_ _ _ _} _ !_ / : assert.
871
Instance: Params (@fmap) 4.
872
Class OMap (M : Type  Type) := omap:  {A B}, (A  option B)  M A  M B.
873
Arguments omap {_ _ _ _} _ !_ / : assert.
874
Instance: Params (@omap) 4.
875

876 877 878 879 880 881
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
882 883
  (at level 100, only parsing, right associativity) : C_scope.

884
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
885
Notation "' ( x1 , x2 ) ← y ; z" :=
886
  (y = (λ x : _, let ' (x1, x2) := x in z))
887
  (at level 100, z at level 200, only parsing, right associativity) : C_scope.
888
Notation "' ( x1 , x2 , x3 ) ← y ; z" :=
889
  (y = (λ x : _, let ' (x1,x2,x3) := x in z))
890
  (at level 100, z at level 200, only parsing, right associativity) : C_scope.
891
Notation "' ( x1 , x2 , x3  , x4 ) ← y ; z" :=
892
  (y = (λ x : _, let ' (x1,x2,x3,x4) := x in z))
893
  (at level 100, z at level 200, only parsing, right associativity) : C_scope.
894 895
Notation "' ( x1 , x2 , x3  , x4 , x5 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5) := x in z))
896
  (at level 100, z at level 200, only parsing, right associativity) : C_scope.
897 898
Notation "' ( x1 , x2 , x3  , x4 , x5 , x6 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5,x6) := x in z))
899 900 901
  (at level 100, z at level 200, only parsing, right associativity) : C_scope.
Notation "x ;; z" := (x = λ _, z)
  (at level 100, z at level 200, only parsing, right associativity): C_scope.
902

903 904 905 906 907
Notation "ps .*1" := (fmap (M:=list) fst ps)
  (at level 10, format "ps .*1").
Notation "ps .*2" := (fmap (M:=list) snd ps)
  (at level 10, format "ps .*2").

908
Class MGuard (M : Type  Type) :=
909
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
910
Arguments mguard _ _ _ !_ _ _ / : assert.
911 912 913 914
Notation "'guard' P ; z" := (mguard P (λ _, z))
  (at level 100, z at level 200, only parsing, right associativity) : C_scope.
Notation "'guard' P 'as' H ; z" := (mguard P (λ H, z))
  (at level 100, z at level 200, only parsing, right associativity) : C_scope.
915 916

(** * Operations on maps *)
917 918
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
919
The function look up [m !! k] should yield the element at key [k] in [m]. *)
920
Class Lookup (K A M : Type) := lookup: K  M  option A.
921
Hint Mode Lookup - - ! : typeclass_instances.
922 923 924
Instance: Params (@lookup) 4.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
925
Notation "( m !!)" := (λ i, m !! i) (only parsing) : C_scope.
926
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
927
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch, assert.
928

929
(** The singleton map *)
930
Class SingletonM K A M := singletonM: K  A  M.
931
Hint Mode SingletonM - - ! : typeclass_instances.
932
Instance: Params (@singletonM) 5.
933
Notation "{[ k := a ]}" := (singletonM k a) (at level 1) : C_scope.
934

935 936
(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
937
Class Insert (K A M : Type) := insert: K  A  M  M.
938
Hint Mode Insert - - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
939
Instance: Params (@insert) 5.
940 941
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
942
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch, assert.
943

944 945 946
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
947
Class Delete (K M : Type) := delete: K  M  M.
948
Hint Mode Delete - ! : typeclass_instances.
949
Instance: Params (@delete) 4.
950
Arguments delete _ _ _ !_ !_ / : simpl nomatch, assert.
951 952

(** The function [alter f k m] should update the value at key [k] using the