collections.v 47.4 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export orders list.
7 8
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
9

10 11
Instance collection_equiv `{ElemOf A C} : Equiv C := λ X Y,
   x, x  X  x  Y.
12 13
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
14 15 16
Instance collection_disjoint `{ElemOf A C} : Disjoint C := λ X Y,
   x, x  X  x  Y  False.
Typeclasses Opaque collection_equiv collection_subseteq collection_disjoint.
17

18 19
(** * Setoids *)
Section setoids_simple.
20
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
21

22
  Global Instance collection_equivalence: @Equivalence C ().
23
  Proof.
24 25 26 27
    split.
    - done.
    - intros X Y ? x. by symmetry.
    - intros X Y Z ?? x; by trans (x  Y).
28
  Qed.
29 30 31 32 33 34
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
  Proof. apply _. Qed.
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (@elem_of A C _) | 5.
  Proof. by intros x ? <- X Y. Qed.
  Global Instance disjoint_proper: Proper (() ==> () ==> iff) (@disjoint C _).
35
  Proof.
36
    intros X1 X2 HX Y1 Y2 HY; apply forall_proper; intros x. by rewrite HX, HY.
37
  Qed.
38 39 40 41 42 43 44 45 46 47 48 49
  Global Instance union_proper : Proper (() ==> () ==> ()) (@union C _).
  Proof. intros X1 X2 HX Y1 Y2 HY x. rewrite !elem_of_union. f_equiv; auto. Qed.
  Global Instance union_list_proper: Proper (() ==> ()) (union_list (A:=C)).
  Proof. by induction 1; simpl; try apply union_proper. Qed.
  Global Instance subseteq_proper : Proper (() ==> () ==> iff) (() : relation C).
  Proof.
    intros X1 X2 HX Y1 Y2 HY. apply forall_proper; intros x. by rewrite HX, HY.
  Qed.
End setoids_simple.

Section setoids.
  Context `{Collection A C}.
50

51 52 53
  (** * Setoids *)
  Global Instance intersection_proper :
    Proper (() ==> () ==> ()) (@intersection C _).
54
  Proof.
55
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_intersection, HX, HY.
56
  Qed.
57 58
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
59
  Proof.
60
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_difference, HX, HY.
61
  Qed.
62
End setoids.
Robbert Krebbers's avatar
Robbert Krebbers committed
63

64 65 66 67 68
Section setoids_monad.
  Context `{CollectionMonad M}.

  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
69
  Proof.
70 71
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_fmap. f_equiv; intros z.
    by rewrite HX, Hf.
72
  Qed.
73
  Global Instance collection_bind_proper {A B} :
74
    Proper (pointwise_relation _ () ==> () ==> ()) (@mbind M _ A B).
75 76
  Proof.
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_bind. f_equiv; intros z.
77
    by rewrite HX, (Hf z).
78 79 80 81 82 83 84
  Qed.
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
  Proof.
    intros X1 X2 HX x. rewrite !elem_of_join. f_equiv; intros z. by rewrite HX.
  Qed.
End setoids_monad.
85

86 87 88 89 90
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

91 92 93
This transformation is implemented using type classes instead of setoid
rewriting to ensure that we traverse each term at most once and to be able to
deal with occurences of the set operations under binders. *)
94
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
95
Arguments set_unfold _ _ {_} : assert.
96 97 98 99 100
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

101
Instance set_unfold_default P : SetUnfold P P | 1000. done. Qed.
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

148
  Global Instance set_unfold_empty x : SetUnfold (x  ( : C)) False.
149
  Proof. constructor. split. apply not_elem_of_empty. done. Qed.
150
  Global Instance set_unfold_singleton x y : SetUnfold (x  ({[ y ]} : C)) (x = y).
151 152 153 154 155 156 157 158 159 160 161 162
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
163
    intros ?; constructor. unfold equiv, collection_equiv.
164
    pose proof (not_elem_of_empty (C:=C)); naive_solver.
165
  Qed.
166
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) X :
167
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
168 169
  Proof.
    intros ?; constructor. unfold equiv, collection_equiv.
170
    pose proof (not_elem_of_empty (C:=C)); naive_solver.
171
  Qed.
172
  Global Instance set_unfold_equiv (P Q : A  Prop) X :
173 174
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
175
  Proof. constructor. apply forall_proper; naive_solver. Qed.
176
  Global Instance set_unfold_subseteq (P Q : A  Prop) X Y :
177 178
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
179
  Proof. constructor. apply forall_proper; naive_solver. Qed.
180
  Global Instance set_unfold_subset (P Q : A  Prop) X :
181
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
182
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, Q x  P x).
183
  Proof.
184 185
    constructor. unfold strict.
    repeat f_equiv; apply forall_proper; naive_solver.
186
  Qed.
187
  Global Instance set_unfold_disjoint (P Q : A  Prop) X Y :
Robbert Krebbers's avatar
Robbert Krebbers committed
188
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
189
    SetUnfold (X ## Y) ( x, P x  Q x  False).
190
  Proof. constructor. unfold disjoint, collection_disjoint. naive_solver. Qed.
191 192 193 194 195 196

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
197
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_l. Qed.
198
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) X :
199
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
200
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_r. Qed.
201
  Global Instance set_unfold_equiv_L (P Q : A  Prop) X Y :
202 203
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
204
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv. Qed.
205 206 207 208 209 210 211 212 213 214
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
215 216
    intros ??; constructor. rewrite elem_of_intersection.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
217 218 219 220
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
221 222
    intros ??; constructor. rewrite elem_of_difference.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
223 224 225 226
  Qed.
End set_unfold.

Section set_unfold_monad.
227
  Context `{CollectionMonad M}.
228

229 230
  Global Instance set_unfold_ret {A} (x y : A) :
    SetUnfold (x  mret (M:=M) y) (x = y).
231
  Proof. constructor; apply elem_of_ret. Qed.
232
  Global Instance set_unfold_bind {A B} (f : A  M B) X (P Q : A  Prop) :
233 234 235
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
236
  Global Instance set_unfold_fmap {A B} (f : A  B) (X : M A) (P : A  Prop) :
237 238 239
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
240
  Global Instance set_unfold_join {A} (X : M (M A)) (P : M A  Prop) :
241 242 243 244
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Robbert Krebbers's avatar
Robbert Krebbers committed
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
Section set_unfold_list.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l  k) ( x, P x  Q x).
  Proof.
    constructor; unfold subseteq, list_subseteq.
    apply forall_proper; naive_solver.
  Qed.
End set_unfold_list.

270 271 272
Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
273 274 275 276 277 278 279
    | H : ?P |- _ =>
       lazymatch type of P with
       | Prop =>
         apply set_unfold_1 in H; revert H;
         first [unfold_hyps; intros H | intros H; fail 1]
       | _ => fail
       end
280 281 282
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

283 284
(** Since [firstorder] already fails or loops on very small goals generated by
[set_solver], we use the [naive_solver] tactic as a substitute. *)
285
Tactic Notation "set_solver" "by" tactic3(tac) :=
286
  try fast_done;
287 288 289 290 291 292 293 294 295 296 297 298 299
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

300 301 302 303
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

304

305 306
(** * Collections with [∪], [∅] and [{[_]}] *)
Section simple_collection.
307
  Context `{SimpleCollection A C}.
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  Implicit Types x y : A.
  Implicit Types X Y : C.
  Implicit Types Xs Ys : list C.

  (** Equality *)
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma collection_equiv_spec X Y : X  Y  X  Y  Y  X.
  Proof. set_solver. Qed.

  (** Subset relation *)
  Global Instance collection_subseteq_antisymm: AntiSymm () (() : relation C).
  Proof. intros ??. set_solver. Qed.

  Global Instance collection_subseteq_preorder: PreOrder (() : relation C).
  Proof. split. by intros ??. intros ???; set_solver. Qed.

  Lemma subseteq_union X Y : X  Y  X  Y  Y.
  Proof. set_solver. Qed.
  Lemma subseteq_union_1 X Y : X  Y  X  Y  Y.
  Proof. by rewrite subseteq_union. Qed.
  Lemma subseteq_union_2 X Y : X  Y  Y  X  Y.
  Proof. by rewrite subseteq_union. Qed.

  Lemma union_subseteq_l X Y : X  X  Y.
  Proof. set_solver. Qed.
  Lemma union_subseteq_r X Y : Y  X  Y.
  Proof. set_solver. Qed.
  Lemma union_least X Y Z : X  Z  Y  Z  X  Y  Z.
  Proof. set_solver. Qed.

  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
  Proof. done. Qed.
  Lemma elem_of_subset X Y : X  Y  ( x, x  X  x  Y)  ¬( x, x  Y  x  X).
  Proof. set_solver. Qed.

  (** Union *)
345 346
  Lemma union_subseteq X Y Z : X  Y  Z  X  Z  Y  Z.
  Proof. set_solver. Qed.
347 348 349 350 351 352
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. set_solver. Qed.
353
  Lemma union_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
354
  Proof. set_solver. Qed.
355
  Lemma union_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
356
  Proof. set_solver. Qed.
357
  Lemma union_mono X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
  Proof. set_solver. Qed.

  Global Instance union_idemp : IdemP (() : relation C) ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_empty_l : LeftId (() : relation C)  ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_empty_r : RightId (() : relation C)  ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_comm : Comm (() : relation C) ().
  Proof. intros X Y. set_solver. Qed.
  Global Instance union_assoc : Assoc (() : relation C) ().
  Proof. intros X Y Z. set_solver. Qed.

  Lemma empty_union X Y : X  Y    X    Y  .
  Proof. set_solver. Qed.

374
  Lemma union_cancel_l X Y Z : Z ## X  Z ## Y  Z  X  Z  Y  X  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
375
  Proof. set_solver. Qed.
376
  Lemma union_cancel_r X Y Z : X ## Z  Y ## Z  X  Z  Y  Z  X  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
377 378
  Proof. set_solver. Qed.

379
  (** Empty *)
Robbert Krebbers's avatar
Robbert Krebbers committed
380 381
  Lemma empty_subseteq X :   X.
  Proof. set_solver. Qed.
382 383
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. set_solver. Qed.
384
  Lemma elem_of_empty x : x  ( : C)  False.
385 386 387 388 389 390 391 392 393 394 395
  Proof. set_solver. Qed.
  Lemma equiv_empty X : X    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l X Y : X  Y    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l_alt X Y : X    X  Y  .
  Proof. set_solver. Qed.
  Lemma non_empty_inhabited x X : x  X  X  .
  Proof. set_solver. Qed.

  (** Singleton *)
396
  Lemma elem_of_singleton_1 x y : x  ({[y]} : C)  x = y.
397
  Proof. by rewrite elem_of_singleton. Qed.
398
  Lemma elem_of_singleton_2 x y : x = y  x  ({[y]} : C).
399 400 401 402 403
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof. set_solver. Qed.
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
  Proof. set_solver. Qed.
404
  Lemma not_elem_of_singleton x y : x  ({[ y ]} : C)  x  y.
405 406 407
  Proof. by rewrite elem_of_singleton. Qed.

  (** Disjointness *)
408
  Lemma elem_of_disjoint X Y : X ## Y   x, x  X  x  Y  False.
409 410 411 412
  Proof. done. Qed.

  Global Instance disjoint_sym : Symmetric (@disjoint C _).
  Proof. intros X Y. set_solver. Qed.
413
  Lemma disjoint_empty_l Y :  ## Y.
414
  Proof. set_solver. Qed.
415
  Lemma disjoint_empty_r X : X ## .
416
  Proof. set_solver. Qed.
417
  Lemma disjoint_singleton_l x Y : {[ x ]} ## Y  x  Y.
418
  Proof. set_solver. Qed.
419
  Lemma disjoint_singleton_r y X : X ## {[ y ]}  y  X.
420
  Proof. set_solver. Qed.
421
  Lemma disjoint_union_l X1 X2 Y : X1  X2 ## Y  X1 ## Y  X2 ## Y.
422
  Proof. set_solver. Qed.
423
  Lemma disjoint_union_r X Y1 Y2 : X ## Y1  Y2  X ## Y1  X ## Y2.
424 425 426 427
  Proof. set_solver. Qed.

  (** Big unions *)
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
428 429
  Proof.
    split.
430 431
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
Ralf Jung's avatar
Ralf Jung committed
432
    - intros [X [Hx]]. induction Hx; simpl; [by apply elem_of_union_l |].
433
      intros. apply elem_of_union_r; auto.
434
  Qed.
435

436 437 438 439 440 441 442
  Lemma union_list_nil :  @nil C = .
  Proof. done. Qed.
  Lemma union_list_cons X Xs :  (X :: Xs) = X   Xs.
  Proof. done. Qed.
  Lemma union_list_singleton X :  [X]  X.
  Proof. simpl. by rewrite (right_id  _). Qed.
  Lemma union_list_app Xs1 Xs2 :  (Xs1 ++ Xs2)   Xs1   Xs2.
443
  Proof.
444 445
    induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id  _)|].
    by rewrite IH, (assoc _).
446
  Qed.
447
  Lemma union_list_reverse Xs :  (reverse Xs)   Xs.
448
  Proof.
449 450 451
    induction Xs as [|X Xs IH]; simpl; [done |].
    by rewrite reverse_cons, union_list_app,
      union_list_singleton, (comm _), IH.
452
  Qed.
453 454
  Lemma union_list_mono Xs Ys : Xs * Ys   Xs   Ys.
  Proof. induction 1; simpl; auto using union_mono. Qed.
455
  Lemma empty_union_list Xs :  Xs    Forall ( ) Xs.
456
  Proof.
457 458 459
    split.
    - induction Xs; simpl; rewrite ?empty_union; intuition.
    - induction 1 as [|?? E1 ? E2]; simpl. done. by apply empty_union.
460
  Qed.
461

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
  Section leibniz.
    Context `{!LeibnizEquiv C}.

    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma collection_equiv_spec_L X Y : X = Y  X  Y  Y  X.
    Proof. unfold_leibniz. apply collection_equiv_spec. Qed.

    (** Subset relation *)
    Global Instance collection_subseteq_partialorder :
      PartialOrder (() : relation C).
    Proof. split. apply _. intros ??. unfold_leibniz. apply (anti_symm _). Qed.

    Lemma subseteq_union_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union. Qed.
    Lemma subseteq_union_1_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union_1. Qed.
    Lemma subseteq_union_2_L X Y : X  Y = Y  X  Y.
    Proof. unfold_leibniz. apply subseteq_union_2. Qed.

    (** Union *)
    Global Instance union_idemp_L : IdemP (@eq C) ().
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
    Global Instance union_empty_l_L : LeftId (@eq C)  ().
    Proof. intros ?. unfold_leibniz. apply (left_id _ _). Qed.
    Global Instance union_empty_r_L : RightId (@eq C)  ().
    Proof. intros ?. unfold_leibniz. apply (right_id _ _). Qed.
    Global Instance union_comm_L : Comm (@eq C) ().
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance union_assoc_L : Assoc (@eq C) ().
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.

    Lemma empty_union_L X Y : X  Y =   X =   Y = .
    Proof. unfold_leibniz. apply empty_union. Qed.

497
    Lemma union_cancel_l_L X Y Z : Z ## X  Z ## Y  Z  X = Z  Y  X = Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
498
    Proof. unfold_leibniz. apply union_cancel_l. Qed.
499
    Lemma union_cancel_r_L X Y Z : X ## Z  Y ## Z  X  Z = Y  Z  X = Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
500 501
    Proof. unfold_leibniz. apply union_cancel_r. Qed.

502 503 504 505 506 507 508 509 510 511 512 513 514
    (** Empty *)
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma equiv_empty_L X : X    X = .
    Proof. unfold_leibniz. apply equiv_empty. Qed.
    Lemma union_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply union_positive_l. Qed.
    Lemma union_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply union_positive_l_alt. Qed.
    Lemma non_empty_inhabited_L x X : x  X  X  .
    Proof. unfold_leibniz. apply non_empty_inhabited. Qed.

    (** Singleton *)
515
    Lemma non_empty_singleton_L x : {[ x ]}  ( : C).
516 517 518 519 520 521 522 523 524 525 526 527 528 529
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.

    (** Big unions *)
    Lemma union_list_singleton_L X :  [X] = X.
    Proof. unfold_leibniz. apply union_list_singleton. Qed.
    Lemma union_list_app_L Xs1 Xs2 :  (Xs1 ++ Xs2) =  Xs1   Xs2.
    Proof. unfold_leibniz. apply union_list_app. Qed.
    Lemma union_list_reverse_L Xs :  (reverse Xs) =  Xs.
    Proof. unfold_leibniz. apply union_list_reverse. Qed.
    Lemma empty_union_list_L Xs :  Xs =   Forall (= ) Xs.
    Proof. unfold_leibniz. by rewrite empty_union_list. Qed. 
  End leibniz.

  Section dec.
530
    Context `{!RelDecision (@equiv C _)}.
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    Lemma collection_subseteq_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.
    Lemma collection_not_subset_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.

    Lemma non_empty_union X Y : X  Y    X    Y  .
    Proof. rewrite empty_union. destruct (decide (X  )); intuition. Qed.
    Lemma non_empty_union_list Xs :  Xs    Exists ( ) Xs.
    Proof. rewrite empty_union_list. apply (not_Forall_Exists _). Qed.

    Context `{!LeibnizEquiv C}.
    Lemma collection_subseteq_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_subseteq_inv. Qed.
    Lemma collection_not_subset_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_not_subset_inv. Qed.
    Lemma non_empty_union_L X Y : X  Y    X    Y  .
    Proof. unfold_leibniz. apply non_empty_union. Qed.
    Lemma non_empty_union_list_L Xs :  Xs    Exists ( ) Xs.
    Proof. unfold_leibniz. apply non_empty_union_list. Qed.
  End dec.
End simple_collection.


(** * Collections with [∪], [∩], [∖], [∅] and [{[_]}] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
555 556
Section collection.
  Context `{Collection A C}.
557
  Implicit Types x y : A.
558
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
559

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
  (** Intersection *)
  Lemma subseteq_intersection X Y : X  Y  X  Y  X.
  Proof. set_solver. Qed. 
  Lemma subseteq_intersection_1 X Y : X  Y  X  Y  X.
  Proof. apply subseteq_intersection. Qed.
  Lemma subseteq_intersection_2 X Y : X  Y  X  X  Y.
  Proof. apply subseteq_intersection. Qed.

  Lemma intersection_subseteq_l X Y : X  Y  X.
  Proof. set_solver. Qed.
  Lemma intersection_subseteq_r X Y : X  Y  Y.
  Proof. set_solver. Qed.
  Lemma intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y.
  Proof. set_solver. Qed.

575
  Lemma intersection_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
576
  Proof. set_solver. Qed.
577
  Lemma intersection_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
578
  Proof. set_solver. Qed.
579
  Lemma intersection_mono X1 X2 Y1 Y2 :
580
    X1  X2  Y1  Y2  X1  Y1  X2  Y2.
581
  Proof. set_solver. Qed.
582 583 584 585 586 587 588 589 590 591 592 593

  Global Instance intersection_idemp : IdemP (() : relation C) ().
  Proof. intros X; set_solver. Qed.
  Global Instance intersection_comm : Comm (() : relation C) ().
  Proof. intros X Y; set_solver. Qed.
  Global Instance intersection_assoc : Assoc (() : relation C) ().
  Proof. intros X Y Z; set_solver. Qed.
  Global Instance intersection_empty_l : LeftAbsorb (() : relation C)  ().
  Proof. intros X; set_solver. Qed.
  Global Instance intersection_empty_r: RightAbsorb (() : relation C)  ().
  Proof. intros X; set_solver. Qed.

594
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
595
  Proof. set_solver. Qed.
596 597 598 599 600 601 602 603 604 605 606

  Lemma union_intersection_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma union_intersection_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.

  (** Difference *)
Robbert Krebbers's avatar
Robbert Krebbers committed
607
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
608
  Proof. set_solver. Qed.
609
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
610
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
611
  Lemma difference_diag X : X  X  .
612
  Proof. set_solver. Qed.
613 614
  Lemma difference_empty X : X    X.
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
615
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
616
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
617
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
618
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
619
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
620
  Proof. set_solver. Qed.
621
  Lemma difference_disjoint X Y : X ## Y  X  Y  X.
622
  Proof. set_solver. Qed.
623 624 625
  Lemma subset_difference_elem_of {x: A} {s: C} (inx: x  s): s  {[ x ]}  s.
  Proof. set_solver. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
626

627
  Lemma difference_mono X1 X2 Y1 Y2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
628 629
    X1  X2  Y2  Y1  X1  Y1  X2  Y2.
  Proof. set_solver. Qed.
630
  Lemma difference_mono_l X Y1 Y2 : Y2  Y1  X  Y1  X  Y2.
Robbert Krebbers's avatar
Robbert Krebbers committed
631
  Proof. set_solver. Qed.
632
  Lemma difference_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
633 634
  Proof. set_solver. Qed.

635
  (** Disjointness *)
636
  Lemma disjoint_intersection X Y : X ## Y  X  Y  .
637 638
  Proof. set_solver. Qed.

639 640
  Section leibniz.
    Context `{!LeibnizEquiv C}.
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

    (** Intersection *)
    Lemma subseteq_intersection_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection. Qed.
    Lemma subseteq_intersection_1_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection_1. Qed.
    Lemma subseteq_intersection_2_L X Y : X  Y = X  X  Y.
    Proof. unfold_leibniz. apply subseteq_intersection_2. Qed.

    Global Instance intersection_idemp_L : IdemP ((=) : relation C) ().
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
    Global Instance intersection_comm_L : Comm ((=) : relation C) ().
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance intersection_assoc_L : Assoc ((=) : relation C) ().
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
    Global Instance intersection_empty_l_L: LeftAbsorb ((=) : relation C)  ().
    Proof. intros ?. unfold_leibniz. apply (left_absorb _ _). Qed.
    Global Instance intersection_empty_r_L: RightAbsorb ((=) : relation C)  ().
    Proof. intros ?. unfold_leibniz. apply (right_absorb _ _). Qed.

661
    Lemma intersection_singletons_L x : {[x]}  {[x]} = ({[x]} : C).
662
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
663 664 665 666 667

    Lemma union_intersection_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
    Proof. unfold_leibniz; apply union_intersection_l. Qed.
    Lemma union_intersection_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
    Proof. unfold_leibniz; apply union_intersection_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
668
    Lemma intersection_union_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
669
    Proof. unfold_leibniz; apply intersection_union_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
670
    Lemma intersection_union_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
671 672 673
    Proof. unfold_leibniz; apply intersection_union_r. Qed.

    (** Difference *)
674 675
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
676 677
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
678 679
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
680 681
    Lemma difference_empty_L X : X   = X.
    Proof. unfold_leibniz. apply difference_empty. Qed.
682 683
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
684 685
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
686 687 688
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
689
    Lemma difference_disjoint_L X Y : X ## Y  X  Y = X.
690
    Proof. unfold_leibniz. apply difference_disjoint. Qed.
691 692

    (** Disjointness *)
693
    Lemma disjoint_intersection_L X Y : X ## Y  X  Y = .
694
    Proof. unfold_leibniz. apply disjoint_intersection. Qed.
695 696 697
  End leibniz.

  Section dec.
698
    Context `{!RelDecision (@elem_of A C _)}.
699
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
700
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
701
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
702
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
703 704
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
705
      intros ? x; split; rewrite !elem_of_union, elem_of_difference; [|intuition].
706
      destruct (decide (x  X)); intuition.
707
    Qed.
708 709 710 711 712
    Lemma difference_union X Y : X  Y  Y  X  Y.
    Proof.
      intros x. rewrite !elem_of_union; rewrite elem_of_difference.
      split; [ | destruct (decide (x  Y)) ]; intuition.
    Qed.
713
    Lemma subseteq_disjoint_union X Y : X  Y   Z, Y  X  Z  X ## Z.
714 715 716 717
    Proof.
      split; [|set_solver].
      exists (Y  X); split; [auto using union_difference|set_solver].
    Qed.
718
    Lemma non_empty_difference X Y : X  Y  Y  X  .
719
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
720
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
721
    Proof. set_solver. Qed.
722 723 724 725
    Lemma singleton_union_difference X Y x :
      {[x]}  (X  Y)  ({[x]}  X)  (Y  {[x]}).
    Proof.
      intro y; split; intros Hy; [ set_solver | ].
726
      destruct (decide (y  ({[x]} : C))); set_solver.
727
    Qed.
728

729 730 731
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
732 733
    Lemma difference_union_L X Y : X  Y  Y = X  Y.
    Proof. unfold_leibniz. apply difference_union. Qed.
734 735
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
736 737
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
738
    Lemma subseteq_disjoint_union_L X Y : X  Y   Z, Y = X  Z  X ## Z.
739
    Proof. unfold_leibniz. apply subseteq_disjoint_union. Qed.
740 741 742
    Lemma singleton_union_difference_L X Y x :
      {[x]}  (X  Y) = ({[x]}  X)  (Y  {[x]}).
    Proof. unfold_leibniz. apply singleton_union_difference. Qed.
743 744 745
  End dec.
End collection.

746 747 748 749 750 751 752 753 754

(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.

Section of_option_list.
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
755 756
  Implicit Types l : list A.

757
  Lemma elem_of_of_option (x : A) mx: x  of_option (C:=C) mx  mx = Some x.
758
  Proof. destruct mx; set_solver. Qed.
759
  Lemma not_elem_of_of_option (x : A) mx: x  of_option (C:=C) mx  mx  Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
760 761
  Proof. by rewrite elem_of_of_option. Qed.

762
  Lemma elem_of_of_list (x : A) l : x  of_list (C:=C) l  x  l.
763 764 765 766 767 768
  Proof.
    split.
    - induction l; simpl; [by rewrite elem_of_empty|].
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
  Qed.
769
  Lemma not_elem_of_of_list (x : A) l : x  of_list (C:=C) l  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
770 771
  Proof. by rewrite elem_of_of_list. Qed.

772
  Global Instance set_unfold_of_option (mx : option A) x :
773
    SetUnfold (x  of_option (C:=C) mx) (mx = Some x).
774 775
  Proof. constructor; apply elem_of_of_option. Qed.
  Global Instance set_unfold_of_list (l : list A) x P :
776
    SetUnfold (x  l) P  SetUnfold (x  of_list (C:=C) l) P.
777 778
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
779 780 781 782 783 784 785 786
  Lemma of_list_nil : of_list (C:=C) [] = .
  Proof. done. Qed.
  Lemma of_list_cons x l : of_list (C:=C) (x :: l) = {[ x ]}  of_list l.
  Proof. done. Qed.
  Lemma of_list_app l1 l2 : of_list (C:=C) (l1 ++ l2)  of_list l1  of_list l2.
  Proof. set_solver. Qed.
  Global Instance of_list_perm : Proper (() ==> ()) (of_list (C:=C)).
  Proof. induction 1; set_solver. Qed.
787

Robbert Krebbers's avatar
Robbert Krebbers committed
788 789 790 791 792 793
  Context `{!LeibnizEquiv C}.
  Lemma of_list_app_L l1 l2 : of_list (C:=C) (l1 ++ l2) = of_list l1  of_list l2.
  Proof. set_solver. Qed.
  Global Instance of_list_perm_L : Proper (() ==> (=)) (of_list (C:=C)).
  Proof. induction 1; set_solver. Qed.
End of_option_list.
794 795 796 797 798 799 800 801 802


(** * Guard *)
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
803
    (x  guard P; X)  P  x  X.
804 805 806 807 808 809 810
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
811
  Lemma guard_empty `{Decision P} {A} (X : M A) : (guard P; X)    ¬P  X  .
812 813 814 815
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
816
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) (X : M A) Q :
817 818 819 820 821 822 823 824
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
  Proof. set_solver. Qed.
End collection_monad_base.


825
(** * Quantifiers *)
826 827 828
Definition set_Forall `{ElemOf A C} (P : A  Prop) (X : C) :=  x, x  X  P x.
Definition set_Exists `{ElemOf A C} (P : A  Prop) (X : C) :=  x, x  X  P x.

Robbert Krebbers's avatar
Robbert Krebbers committed
829
Section quantifiers.
830 831
  Context `{SimpleCollection A C} (P : A  Prop).
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
832

833
  Lemma set_Forall_empty : set_Forall P ( : C).
834
  Proof. unfold set_Forall. set_solver. Qed.
835
  Lemma set_Forall_singleton x : set_Forall P ({[ x ]} : C)  P x.
836
  Proof. unfold set_Forall. set_solver. Qed.
837 838
  Lemma set_Forall_union X Y :
    set_Forall P X  set_Forall P Y  set_Forall P (X  Y).
839
  Proof. unfold set_Forall. set_solver. Qed.
840
  Lemma set_Forall_union_inv_1 X Y : set_Forall P (X  Y)  set_Forall P X.
841
  Proof. unfold set_Forall. set_solver. Qed.
842
  Lemma set_Forall_union_inv_2 X Y : set_Forall P (X  Y)  set_Forall P Y.
843
  Proof. unfold set_Forall. set_solver. Qed.
844

845
  Lemma set_Exists_empty : ¬set_Exists P ( : C).
846
  Proof. unfold set_Exists. set_solver. Qed.
847
  Lemma set_Exists_singleton x : set_Exists P ({[ x ]} : C)  P x.
848
  Proof. unfold set_Exists. set_solver. Qed.
849
  Lemma set_Exists_union_1 X Y : set_Exists P X  set_Exists P (X  Y).
850
  Proof. unfold set_Exists. set_solver. Qed.
851
  Lemma set_Exists_union_2 X Y : set_Exists P Y  set_Exists P (X  Y).
852
  Proof. unfold set_Exists. set_solver. Qed.
853
  Lemma set_Exists_union_inv X Y :
854
    set_Exists P (X  Y)  set_Exists P X  set_Exists P Y.
855
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
856 857
End quantifiers.

858
Section more_quantifiers.
Robbert Krebbers's avatar