base.v 19.6 KB
Newer Older
1 2 3 4 5 6
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11 12 13 14 15
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

(** Ensure that [simpl] unfolds [id] and [compose] when fully applied. *)
16 17 18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.

19 20 21 22
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
23 24
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
25

26 27
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
28 29 30
Delimit Scope C_scope with C.
Global Open Scope C_scope.

31
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38 39 40
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

41 42 43
Notation "(→)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( T →)" := (λ y, T  y) (only parsing) : C_scope.
Notation "(→ T )" := (λ y, y  T) (only parsing) : C_scope.
44
Notation "t $ r" := (t r)
45
  (at level 65, right associativity, only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
46 47 48 49
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
50 51 52

(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
53 54 55
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

56 57 58 59
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
60 61
Class PropHolds (P : Prop) := prop_holds: P.

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
Proof. now repeat intro. Qed.

Ltac solve_propholds :=
  match goal with
  | [ |- PropHolds (?P) ] => apply _
  | [ |- ?P ] => change (PropHolds P); apply _
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
77 78 79
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

80 81 82
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
83 84 85 86 87 88 89 90 91 92
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

93 94 95 96 97 98 99 100
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102 103
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
Hint Extern 0 (?x  ?x) => reflexivity.

104 105 106 107 108
(** ** Operations on collections *)
(** We define operational type classes for the standard operations and
relations on collections: the empty collection [∅], the union [(∪)],
intersection [(∩)], difference [(∖)], and the singleton [{[_]}]
operation, and the subset [(⊆)] and element of [(∈)] relation. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
109 110 111 112
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
113
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
114 115 116 117 118 119
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

Class Intersection A := intersection: A  A  A.
120
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
121 122 123 124 125 126
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
127
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
128 129 130 131 132
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

133 134 135 136 137 138
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
139
Class SubsetEq A := subseteq: A  A  Prop.
140
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
141 142 143 144 145 146 147 148 149 150 151 152
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

Hint Extern 0 (?x  ?x) => reflexivity.

Class ElemOf A B := elem_of: A  B  Prop.
153
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
154 155 156 157 158 159 160 161 162
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
163 164 165 166 167 168 169
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
Notation "( X ⊥)" := (disjoint X) (only parsing) : C_scope.
Notation "(⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

170
(** ** Operations on maps *)
171 172
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
173
The function lookup [m !! k] should yield the element at key [k] in [m]. *)
174 175
Class Lookup (K : Type) (M : Type  Type) :=
  lookup:  {A}, K  M A  option A.
176 177 178 179 180 181 182 183 184
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
185
Class Insert (K : Type) (M : Type  Type) :=
186 187 188 189 190
  insert:  {A}, K  A  M A  M A.
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.

191 192 193 194 195 196
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
Class Delete (K : Type) (M : Type  Type) :=
  delete:  {A}, K  M A  M A.
Instance: Params (@delete) 4.
197 198

(** The function [alter f k m] should update the value at key [k] using the
199 200
function [f], which is called with the original value. *)
Class Alter (K : Type) (M : Type  Type) :=
201 202 203 204
  alter:  {A}, (A  A)  K  M A  M A.
Instance: Params (@alter) 4.

(** The function [alter f k m] should update the value at key [k] using the
205 206 207 208
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
Class PartialAlter (K : Type) (M : Type  Type) :=
209 210 211 212 213
  partial_alter:  {A}, (option A  option A)  K  M A  M A.
Instance: Params (@partial_alter) 4.

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
214 215 216
Class Dom (K : Type) (M : Type  Type) :=
  dom:  {A} C `{Empty C} `{Union C} `{Singleton K C}, M A  C.
Instance: Params (@dom) 8.
217 218 219 220

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)]
provided that [k] is a member of either [m1] or [m2].*)
221
Class Merge (M : Type  Type) :=
222 223 224 225 226 227 228
  merge:  {A}, (option A  option A  option A)  M A  M A  M A.
Instance: Params (@merge) 3.

(** We lift the insert and delete operation to lists of elements. *)
Definition insert_list `{Insert K M} {A} (l : list (K * A)) (m : M A) : M A :=
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
229
Definition delete_list `{Delete K M} {A} (l : list K) (m : M A) : M A :=
230
  fold_right delete m l.
231
Instance: Params (@delete_list) 4.
232 233 234 235

(** The function [union_with f m1 m2] should yield the union of [m1] and [m2]
using the function [f] to combine values of members that are in both [m1] and
[m2]. *)
236
Class UnionWith (M : Type  Type) :=
237
  union_with:  {A}, (A  A  A)  M A  M A  M A.
238 239 240
Instance: Params (@union_with) 3.

(** Similarly for the intersection and difference. *)
241
Class IntersectionWith (M : Type  Type) :=
242
  intersection_with:  {A}, (A  A  A)  M A  M A  M A.
243
Instance: Params (@intersection_with) 3.
244
Class DifferenceWith (M : Type  Type) :=
245
  difference_with:  {A}, (A  A  option A)  M A  M A  M A.
246
Instance: Params (@difference_with) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
247

248 249 250 251
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
252 253 254 255 256 257 258 259 260 261 262 263
Class Injective {A B} R S (f : A  B) :=
  injective:  x y : A, S (f x) (f y)  R x y.
Class Idempotent {A} R (f : A  A  A) :=
  idempotent:  x, R (f x x) x.
Class Commutative {A B} R (f : B  B  A) :=
  commutative:  x y, R (f x y) (f y x).
Class LeftId {A} R (i : A) (f : A  A  A) :=
  left_id:  x, R (f i x) x.
Class RightId {A} R (i : A) (f : A  A  A) :=
  right_id:  x, R (f x i) x.
Class Associative {A} R (f : A  A  A) :=
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
Robbert Krebbers's avatar
Robbert Krebbers committed
264 265 266 267 268 269 270 271

Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.

272 273 274
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
275 276
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
277
Proof. auto. Qed.
278 279
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
280
Proof. auto. Qed.
281 282
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
283
Proof. auto. Qed.
284 285
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
286
Proof. auto. Qed.
287 288
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
289 290
Proof. auto. Qed.

291 292 293 294
(** ** Monadic operations *)
(** We do use the operation type classes for monads merely for convenient
overloading of notations and do not formalize any theory on monads (we do not
define a class with the monad laws). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
295 296 297 298 299 300 301 302 303
Section monad_ops.
  Context (M : Type  Type).

  Class MRet := mret:  {A}, A  M A.
  Class MBind := mbind:  {A B}, (A  M B)  M A  M B.
  Class MJoin := mjoin:  {A}, M (M A)  M A.
  Class FMap := fmap:  {A B}, (A  B)  M A  M B.
End monad_ops.

304
Instance: Params (@mret) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
305
Arguments mret {M MRet A} _.
306
Instance: Params (@mbind) 4.
Robbert Krebbers's avatar
Robbert Krebbers committed
307
Arguments mbind {M MBind A B} _ _.
308
Instance: Params (@mjoin) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
309
Arguments mjoin {M MJoin A} _.
310
Instance: Params (@fmap) 4.
Robbert Krebbers's avatar
Robbert Krebbers committed
311 312 313
Arguments fmap {M FMap A B} _ _.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
314 315
Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, next at level 35, right associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
316 317
Infix "<$>" := fmap (at level 65, right associativity, only parsing) : C_scope.

318 319
(** ** Axiomatization of ordered structures *)
(** A pre-order equiped with a smallest element. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
320 321 322 323 324
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} := {
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.

325 326 327 328
(** We do not include equality in the following interfaces so as to avoid the
need for proofs that the  relations and operations respect setoid equality.
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
329 330 331 332 333 334 335 336 337 338 339 340 341
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} := {
  jsl_preorder :>> BoundedPreOrder A;
  subseteq_union_l x y : x  x  y;
  subseteq_union_r x y : y  x  y;
  union_least x y z : x  z  y  z  x  y  z
}.
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} := {
  msl_preorder :>> BoundedPreOrder A;
  subseteq_intersection_l x y : x  y  x;
  subseteq_intersection_r x y : x  y  y;
  intersection_greatest x y z : z  x  z  y  z  x  y
}.

342 343 344 345
(** ** Axiomatization of collections *)
(** The class [Collection A C] axiomatizes a collection of type [C] with
elements of type [A]. Since [C] is not dependent on [A], we use the monomorphic
[Map] type class instead of the polymorphic [FMap]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
346
Class Map A C := map: (A  A)  (C  C).
347 348
Instance: Params (@map) 3.
Class Collection A C `{ElemOf A C} `{Empty C} `{Union C}
Robbert Krebbers's avatar
Robbert Krebbers committed
349
    `{Intersection C} `{Difference C} `{Singleton A C} `{Map A C} := {
350
  not_elem_of_empty (x : A) : x  ;
351
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
Robbert Krebbers's avatar
Robbert Krebbers committed
352 353 354 355 356 357
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_map f X (x : A) : x  map f X   y, x = f y  y  X
}.

358 359 360
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
361
Class Elements A C := elements: C  list A.
362 363
Instance: Params (@elements) 3.
Class FinCollection A C `{Empty C} `{Union C} `{Intersection C} `{Difference C}
Robbert Krebbers's avatar
Robbert Krebbers committed
364 365 366 367
    `{Singleton A C} `{ElemOf A C} `{Map A C} `{Elements A C} := {
  fin_collection :>> Collection A C;
  elements_spec X x : x  X  In x (elements X);
  elements_nodup X : NoDup (elements X)
368 369 370
}.
Class Size C := size: C  nat.
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
371

372 373 374
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
375
Class Fresh A C := fresh: C  A.
376
Instance: Params (@fresh) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
377
Class FreshSpec A C `{!Fresh A C} `{!ElemOf A C} := {
378
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
379 380 381
  is_fresh (X : C) : fresh X  X
}.

382 383 384 385
(** * Miscellaneous *)
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
Proof. now injection 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
386

387 388 389 390
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

391 392 393
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
394 395 396 397 398 399 400 401 402 403
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

404
(** ** Products *)
405 406 407 408 409 410
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
411 412 413

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
414 415
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
416
  Proof. firstorder eauto. Qed.
417 418
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
419
  Proof. firstorder eauto. Qed.
420 421
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
422
  Proof. firstorder eauto. Qed.
423 424
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
425 426 427 428 429 430 431 432 433
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

434
(** ** Other *)
435 436
Definition lift_relation {A B} (R : relation A)
  (f : B  A) : relation B := λ x y, R (f x) (f y).
Robbert Krebbers's avatar
Robbert Krebbers committed
437 438 439
Definition lift_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (lift_relation R f).
Proof. unfold lift_relation. firstorder. Qed.
440 441
Hint Extern 0 (Equivalence (lift_relation _ _)) =>
  eapply @lift_relation_equivalence : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
442 443 444 445 446 447 448 449 450 451 452 453 454 455

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
Proof. easy. Qed.
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
Proof. easy. Qed.
Instance:  A, Associative (=) (λ x _ : A, x).
Proof. easy. Qed.
Instance:  A, Associative (=) (λ _ x : A, x).
Proof. easy. Qed.
Instance:  A, Idempotent (=) (λ x _ : A, x).
Proof. easy. Qed.
Instance:  A, Idempotent (=) (λ _ x : A, x).
Proof. easy. Qed.

456 457
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
458
Proof. easy. Qed.
459 460
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
461
Proof. easy. Qed.
462 463
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
464
Proof. easy. Qed.