base.v 36.2 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
9
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid.
Robbert Krebbers's avatar
Robbert Krebbers committed
10

11 12 13 14
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

15 16
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
17 18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.
19
Arguments flip _ _ _ _ _ _/.
20
Typeclasses Transparent id compose flip.
21

22 23 24 25
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
26 27
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
28

29 30 31
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

32 33
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
34 35 36
Delimit Scope C_scope with C.
Global Open Scope C_scope.

37
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
38 39 40 41 42 43 44 45 46
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

47 48 49 50
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

51
Notation "t $ r" := (t r)
52
  (at level 65, right associativity, only parsing) : C_scope.
53 54 55
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
56 57 58 59
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
60

61 62 63 64 65 66 67 68 69 70 71 72
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

73 74
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
75 76 77
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

78 79 80 81
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
82 83
Class PropHolds (P : Prop) := prop_holds: P.

84 85
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
86
Proof. repeat intro; trivial. Qed.
87 88 89

Ltac solve_propholds :=
  match goal with
90 91
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
92 93 94 95 96 97 98
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
99 100 101
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

102 103 104 105 106 107 108 109 110
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
111
  match iA, iB with populate x, populate y => populate (x,y) end.
112
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
113
  match iA with populate x => populate (inl x) end.
114
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
115
  match iB with populate y => populate (inl y) end.
116 117
Instance option_inhabited {A} : Inhabited (option A) := populate None.

118 119 120 121 122 123
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

124 125 126
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
127 128 129 130 131 132 133 134 135 136
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.

Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv (A:=A))
  end.

158 159 160 161 162 163 164 165
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
166
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
167 168
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
169

170
(** ** Operations on collections *)
171
(** We define operational type classes for the traditional operations and
172
relations on collections: the empty collection [∅], the union [(∪)],
173 174
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
175 176 177 178
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
179
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
180 181 182 183 184
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

185
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
186 187 188
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
189
Class Intersection A := intersection: A  A  A.
190
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
191 192 193 194 195 196
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
197
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
198 199 200 201 202
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

203 204
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
205
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
206
Notation "{[ x ; y ; .. ; z ]}" :=
207 208 209 210 211 212
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
213

Robbert Krebbers's avatar
Robbert Krebbers committed
214
Class SubsetEq A := subseteq: A  A  Prop.
215
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
216 217 218 219 220 221 222 223
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
224 225
Infix "⊆*" := (Forall2 subseteq) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 subseteq) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
226

227 228 229 230 231 232 233 234 235 236 237 238
Hint Extern 0 (_  _) => reflexivity.

Class Subset A := subset: A  A  Prop.
Instance: Params (@subset) 2.
Infix "⊂" := subset (at level 70) : C_scope.
Notation "(⊂)" := subset (only parsing) : C_scope.
Notation "( X ⊂ )" := (subset X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, subset Y X) (only parsing) : C_scope.
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
239 240

Class ElemOf A B := elem_of: A  B  Prop.
241
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
242 243 244 245 246 247 248 249 250
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
251 252 253 254
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
Notation "(.⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
Notation "⊥ l" := (disjoint_list l) (at level 20, format "⊥  l") : C_scope.

Section default_disjoint_list.
  Context `{Empty A} `{Union A} `{Disjoint A}.
  Inductive default_disjoint_list : DisjointList A :=
    | disjoint_nil_2 :  []
    | disjoint_cons_2 X Xs : X   Xs   Xs   (X :: Xs).
  Global Existing Instance default_disjoint_list.

  Lemma disjoint_list_nil :  @nil A  True.
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
End default_disjoint_list.

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
276

277 278 279 280 281
(** We define variants of the relations [(≡)] and [(⊆)] that are indexed by
an environment. *)
Class EquivEnv A B := equiv_env : A  relation B.
Notation "X ≡@{ E } Y" := (equiv_env E X Y)
  (at level 70, format "X  ≡@{ E }  Y") : C_scope.
282
Notation "(≡@{ E } )" := (equiv_env E) (E at level 1, only parsing) : C_scope.
283 284 285
Instance: Params (@equiv_env) 4.

Class SubsetEqEnv A B := subseteq_env : A  relation B.
286 287 288 289 290 291 292 293
Instance: Params (@subseteq_env) 4.
Notation "X ⊑@{ E } Y" := (subseteq_env E X Y)
  (at level 70, format "X  ⊑@{ E }  Y") : C_scope.
Notation "(⊑@{ E } )" := (subseteq_env E)
  (E at level 1, only parsing) : C_scope.
Notation "X ⊑@{ E }* Y" := (Forall2 (subseteq_env E) X Y)
  (at level 70, format "X  ⊑@{ E }*  Y") : C_scope.
Notation "(⊑@{ E }*)" := (Forall2 (subseteq_env E))
294 295 296
  (E at level 1, only parsing) : C_scope.
Instance: Params (@subseteq_env) 4.

297 298 299
Hint Extern 0 (_ @{_} _) => reflexivity.
Hint Extern 0 (_ @{_} _) => reflexivity.

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)

316
(** We use these type classes merely for convenient overloading of notations and
317 318 319 320 321 322 323 324 325
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : Type  Type) {A B} (f : A  M B) := mbind: M A  M B.
Notation MBind M := ( {A B} (f : A  M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
326
Arguments mbind {_ _ _} _ {_} !_ /.
327 328 329

Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
330
Arguments mjoin {_ _ _} !_ /.
331 332 333 334

Class FMapD (M : Type  Type) {A B} (f : A  B) := fmap: M A  M B.
Notation FMap M := ( {A B} (f : A  B), FMapD M f)%type.
Instance: Params (@fmap) 6.
335
Arguments fmap {_ _ _} _ {_} !_ /.
336 337 338 339 340 341 342

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
343
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
344
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
345 346

Class MGuard (M : Type  Type) :=
347 348 349 350 351 352
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
353

354
(** ** Operations on maps *)
355 356
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
357
The function look up [m !! k] should yield the element at key [k] in [m]. *)
358
Class Lookup (K A M : Type) := lookup: K  M  option A.
359 360 361 362 363 364
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
365
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
366 367 368

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
369
Class Insert (K A M : Type) := insert: K  A  M  M.
370 371 372
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
373
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
374

375 376 377
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
378
Class Delete (K M : Type) := delete: K  M  M.
379 380
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
381 382

(** The function [alter f k m] should update the value at key [k] using the
383
function [f], which is called with the original value. *)
384
Class AlterD (K A M : Type) (f : A  A) := alter: K  M  M.
385 386 387
Notation Alter K A M := ( (f : A  A), AlterD K A M f)%type.
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
388 389

(** The function [alter f k m] should update the value at key [k] using the
390 391 392
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
393 394
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
395
Instance: Params (@partial_alter) 4.
396
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
397 398 399

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
400 401 402
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
403 404

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
405 406 407 408 409
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
410 411

(** We lift the insert and delete operation to lists of elements. *)
412
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
413 414
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
415
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
416
  fold_right delete m l.
417 418 419 420 421 422 423
Instance: Params (@delete_list) 3.

(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
424
Instance: Params (@union_with) 3.
425
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
426

427 428 429
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
430
Instance: Params (@intersection_with) 3.
431 432
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

433 434
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
435
Instance: Params (@difference_with) 3.
436
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
437

438 439 440 441
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

442 443 444 445
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
446 447 448 449 450
Class Injective {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  injective:  x y, S (f x) (f y)  R x y.
Class Injective2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  injective2:  x1 x2  y1 y2, S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
451 452 453 454
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel:  x, S (f (g x)) x.
Class Surjective {A B} (R : relation B) (f : A  B) :=
  surjective :  y,  x, R (f x) y.
455
Class Idempotent {A} (R : relation A) (f : A  A  A) : Prop :=
456
  idempotent:  x, R (f x x) x.
457
Class Commutative {A B} (R : relation A) (f : B  B  A) : Prop :=
458
  commutative:  x y, R (f x y) (f y x).
459
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
460
  left_id:  x, R (f i x) x.
461
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
462
  right_id:  x, R (f x i) x.
463
Class Associative {A} (R : relation A) (f : A  A  A) : Prop :=
464
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
465
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
466
  left_absorb:  x, R (f i x) i.
467
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
468
  right_absorb:  x, R (f x i) i.
469 470 471 472
Class LeftDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  left_distr:  x y z, R (f x (g y z)) (g (f x y) (f x z)).
Class RightDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  right_distr:  y z x, R (f (g y z) x) (g (f y x) (f z x)).
473 474
Class AntiSymmetric {A} (R S : relation A) : Prop :=
  anti_symmetric:  x y, S x y  S y x  R x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
475

476
Arguments irreflexivity {_} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
477
Arguments injective {_ _ _ _} _ {_} _ _ _.
478
Arguments injective2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
479 480
Arguments cancel {_ _ _} _ _ {_} _.
Arguments surjective {_ _ _} _ {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
481 482 483 484 485
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
486 487
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
488 489
Arguments left_distr {_ _} _ _ {_} _ _ _.
Arguments right_distr {_ _} _ _ {_} _ _ _.
490
Arguments anti_symmetric {_ _} _ {_} _ _ _ _.
491

492 493 494 495
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idempotent_L {A} (f : A  A  A) `{!Idempotent (=) f} x : f x x = x.
496
Proof. auto. Qed.
497
Lemma commutative_L {A B} (f : B  B  A) `{!Commutative (=) f} x y :
498
  f x y = f y x.
499
Proof. auto. Qed.
500
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
501
Proof. auto. Qed.
502
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
503
Proof. auto. Qed.
504
Lemma associative_L {A} (f : A  A  A) `{!Associative (=) f} x y z :
505
  f x (f y z) = f (f x y) z.
506
Proof. auto. Qed.
507
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
508 509
  f i x = i.
Proof. auto. Qed.
510
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
511 512
  f x i = i.
Proof. auto. Qed.
513
Lemma left_distr_L {A} (f g : A  A  A) `{!LeftDistr (=) f g} x y z :
514 515
  f x (g y z) = g (f x y) (f x z).
Proof. auto. Qed.
516
Lemma right_distr_L {A} (f g : A  A  A) `{!RightDistr (=) f g} y z x :
517 518
  f (g y z) x = g (f y x) (f z x).
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
519

520
(** ** Axiomatization of ordered structures *)
521 522
(** A pre-order equipped with a smallest element. *)
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
523 524 525
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.
526 527 528
Class PartialOrder {A} (R : relation A) : Prop := {
  po_preorder :> PreOrder R;
  po_antisym :> AntiSymmetric (=) R
529
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
530

531
(** We do not include equality in the following interfaces so as to avoid the
532
need for proofs that the relations and operations respect setoid equality.
533 534
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
535
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} : Prop := {
536
  bjsl_preorder :>> BoundedPreOrder A;
537 538
  union_subseteq_l x y : x  x  y;
  union_subseteq_r x y : y  x  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
539 540
  union_least x y z : x  z  y  z  x  y  z
}.
541
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
542
  msl_preorder :>> BoundedPreOrder A;
543 544
  intersection_subseteq_l x y : x  y  x;
  intersection_subseteq_r x y : x  y  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
545 546
  intersection_greatest x y z : z  x  z  y  z  x  y
}.
547 548 549 550

(** A join distributive lattice with distributivity stated in the order
theoretic way. We will prove that distributivity of join, and distributivity
as an equality can be derived. *)
551
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
552
    `{Union A} `{Intersection A} : Prop := {
553
  lbl_bjsl :>> BoundedJoinSemiLattice A;
554 555
  lbl_msl :>> MeetSemiLattice A;
  lbl_distr x y z : (x  y)  (x  z)  x  (y  z)
556
}.
557

558
(** ** Axiomatization of collections *)
559 560
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
561
Instance: Params (@map) 3.
562
Class SimpleCollection A C `{ElemOf A C}
563
    `{Empty C} `{Singleton A C} `{Union C} : Prop := {
564
  not_elem_of_empty (x : A) : x  ;
565
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
566 567 568
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class Collection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
569
    `{Union C} `{Intersection C} `{Difference C} : Prop := {
570
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
571
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
572 573 574 575 576 577 578
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class CollectionOps A C
    `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C}
    `{IntersectionWith A C} `{Filter A C} : Prop := {
  collection_ops :>> Collection A C;
579
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
580 581 582
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
  elem_of_filter X P `{ x, Decision (P x)} x :
    x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
583 584
}.

585 586 587
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
588
Class Elements A C := elements: C  list A.
589
Instance: Params (@elements) 3.
590 591 592 593 594 595 596 597 598 599 600 601 602 603

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
604 605
    `{Union C} `{Intersection C} `{Difference C}
    `{Elements A C} `{ x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
606
  fin_collection :>> Collection A C;
607
  elements_spec X x : x  X  x  elements X;
Robbert Krebbers's avatar
Robbert Krebbers committed
608
  elements_nodup X : NoDup (elements X)
609 610
}.
Class Size C := size: C  nat.
611
Arguments size {_ _} !_ / : simpl nomatch.
612
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
613

614 615 616 617 618 619 620 621 622 623
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class CollectionMonad M `{ A, ElemOf A (M A)}
    `{ A, Empty (M A)} `{ A, Singleton A (M A)} `{ A, Union (M A)}
624
    `{!MBind M} `{!MRet M} `{!FMap M} `{!MJoin M} : Prop := {
625 626 627
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
628
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
629 630
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
631
  elem_of_join {A} (X : M (M A)) (x : A) : x  mjoin X   Y, x  Y  Y  X
632 633
}.

634 635 636
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
637
Class Fresh A C := fresh: C  A.
638
Instance: Params (@fresh) 3.
639
Class FreshSpec A C `{ElemOf A C}
640
    `{Empty C} `{Singleton A C} `{Union C} `{Fresh A C} : Prop := {
641
  fresh_collection_simple :>> SimpleCollection A C;
642
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
643 644 645
  is_fresh (X : C) : fresh X  X
}.

646
(** * Miscellaneous *)
647 648 649
Class Half A := half: A  A.
Notation "x .½" := (half x) (at level 20, format "x .½") : C_scope.

650 651
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
652
Proof. injection 1; trivial. Qed.
653
Lemma not_symmetry `{R : relation A} `{!Symmetric R} x y : ¬R x y  ¬R y x.
654
Proof. intuition. Qed.
655
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
656 657
Proof. intuition. Qed.

658 659 660
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
661 662 663 664 665 666 667 668 669 670
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

671
(** ** Products *)
672 673 674 675
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
Arguments fst_map {_ _ _} _ !_ /.
Arguments snd_map {_ _ _} _ !_ /.

Instance:  {A A' B} (f : A  A'),
  Injective (=) (=) f  Injective (=) (=) (@fst_map A A' B f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * apply (injective f). congruence.
  * congruence.
Qed.
Instance:  {A B B'} (f : B  B'),
  Injective (=) (=) f  Injective (=) (=) (@snd_map A B B' f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * congruence.
  * apply (injective f). congruence.
Qed.

694 695
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
696 697 698

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
699 700
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
701
  Proof. firstorder eauto. Qed.
702 703
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
704
  Proof. firstorder eauto. Qed.
705 706
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
707
  Proof. firstorder eauto. Qed.
708 709
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
710 711 712 713 714 715 716 717 718
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

719
(** ** Other *)
720 721 722 723 724 725 726 727 728
Definition proj_eq {A B} (f : B  A) : relation B := λ x y, f x = f y.
Global Instance proj_eq_equivalence `(f : B  A) : Equivalence (proj_eq f).
Proof. unfold proj_eq. repeat split; red; intuition congruence. Qed.
Notation "x ~{ f } y" := (proj_eq f x y)
  (at level 70, format "x  ~{ f }  y") : C_scope.
Notation "(~{ f } )" := (proj_eq f) (f at level 10, only parsing) : C_scope.

Hint Extern 0 (_ ~{_} _) => reflexivity.
Hint Extern 0 (_ ~{_} _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
729 730

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
731
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
732
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
733
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
734
Instance:  A, Associative (=) (λ x _ : A, x).
735
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
736
Instance:  A, Associative (=) (λ _ x : A, x).
737
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
738
Instance:  A, Idempotent (=) (λ x _ : A, x).
739
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
740
Instance:  A, Idempotent (=) (λ _ x : A, x).
741
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
742

743 744
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
745
Proof. red. trivial. Qed.
746 747
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
748
Proof. red. trivial. Qed.
749 750 751 752 753 754
Instance left_absorb_propholds {A} (R : relation A) i f :
  LeftAbsorb R i f   x, PropHolds (R (f i x) i).
Proof. red. trivial. Qed.
Instance right_absorb_propholds {A} (R : relation A) i f :
  RightAbsorb R i f   x, PropHolds (R (f x i) i).
Proof. red. trivial. Qed.
755 756
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
757
Proof. red. trivial. Qed.
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850

Lemma injective_iff {A B} {R : relation A} {S : relation B} (f : A  B)
  `{!Injective R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y)  R x y.
Proof. firstorder. Qed.
Instance: Injective (=) (=) (@inl A B).
Proof. injection 1; auto. Qed.
Instance: Injective (=) (=) (@inr A B).
Proof. injection 1; auto. Qed.
Instance: Injective2 (=) (=) (=) (@pair A B).
Proof. injection 1; auto. Qed.
Instance:  `{Injective2 A B C R1 R2 R3 f} y, Injective R1 R3 (λ x, f x y).
Proof. repeat intro; edestruct (injective2 f); eauto. Qed.
Instance:  `{Injective2 A B C R1 R2 R3 f} x, Injective R2 R3 (f x).
Proof. repeat intro; edestruct (injective2 f); eauto. Qed.

Lemma cancel_injective `{Cancel A B R1 f g}
  `{!Equivalence R1} `{!Proper (R2 ==> R1) f} : Injective R1 R2 g.
Proof.
  intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity.
Qed.
Lemma cancel_surjective `{Cancel A B R1 f g} : Surjective R1 f.
Proof. intros y. exists (g y). auto. Qed.

Lemma impl_transitive (P Q R : Prop) : (P  Q)  (Q  R)  (P  R).
Proof. tauto. Qed.
Instance: Commutative () (@eq A).
Proof. red. intuition. Qed.
Instance: Commutative () (λ x y, @eq A y x).
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: LeftId () True ().
Proof. red. intuition. Qed.
Instance: RightId () True ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red. intuition. Qed.
Instance: LeftId () False ().
Proof. red. intuition. Qed.
Instance: RightId () False ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red. intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red. intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red. intuition. Qed.
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Lemma not_injective `{Injective A B R R' f} x y : ¬R x y  ¬R' (f x) (f y).
Proof. intuition. Qed.
Instance injective_compose {A B C} R1 R2 R3 (f : A  B) (g : B  C) :
  Injective R1 R2 f  Injective R2 R3 g  Injective R1 R3 (g  f).
Proof. red; intuition. Qed.
Instance surjective_compose {A B C} R (f : A  B) (g : B  C) :
  Surjective (=) f  Surjective R g  Surjective R (g  f).
Proof.
  intros ?? x. unfold compose. destruct (surjective g x) as [y ?].
  destruct (surjective f y) as [z ?]. exists z. congruence.
Qed.

Section sig_map.
  Context `{P : A  Prop} `{Q : B  Prop} (f : A  B) (Hf :  x, P x  Q (f x)).
  Definition sig_map (x : sig P) : sig Q := f (`x)  Hf _ (proj2_sig x).
  Global Instance sig_map_injective:
    ( x, ProofIrrel (P x))  Injective (=) (=) f  Injective (=) (=) sig_map.
  Proof.
    intros ?? [x Hx] [y Hy]. injection 1. intros Hxy.
    apply (injective f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto.
  Qed.
End sig_map.