decidable.v 6.94 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects theorems, definitions, tactics, related to propositions
with a decidable equality. Such propositions are collected by the [Decision]
type class. *)
6 7
Require Export base tactics.

Robbert Krebbers's avatar
Robbert Krebbers committed
8 9
Hint Extern 200 (Decision _) => progress (lazy beta) : typeclass_instances.

10 11
Lemma dec_stable `{Decision P} : ¬¬P  P.
Proof. firstorder. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
12

13 14 15
Lemma Is_true_reflect (b : bool) : reflect b b.
Proof. destruct b. by left. right. intros []. Qed.

16 17 18 19 20 21 22 23 24
(** We introduce [decide_rel] to avoid inefficienct computation due to eager
evaluation of propositions by [vm_compute]. This inefficiency occurs if
[(x = y) := (f x = f y)] as [decide (x = y)] evaluates to [decide (f x = f y)]
which then might lead to evaluation of [f x] and [f y]. Using [decide_rel]
we hide [f] under a lambda abstraction to avoid this unnecessary evaluation. *)
Definition decide_rel {A B} (R : A  B  Prop) {dec :  x y, Decision (R x y)}
  (x : A) (y : B) : Decision (R x y) := dec x y.
Lemma decide_rel_correct {A B} (R : A  B  Prop) `{ x y, Decision (R x y)}
  (x : A) (y : B) : decide_rel R x y = decide (R x y).
25
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
26

27 28 29 30 31 32 33 34 35
(** The tactic [destruct_decide] destructs a sumbool [dec]. If one of the
components is double negated, it will try to remove the double negation. *)
Ltac destruct_decide dec :=
  let H := fresh in
  destruct dec as [H|H];
  try match type of H with
  | ¬¬_ => apply dec_stable in H
  end.

36
(** The tactic [case_decide] performs case analysis on an arbitrary occurrence
37
of [decide] or [decide_rel] in the conclusion or hypotheses. *)
38
Ltac case_decide :=
Robbert Krebbers's avatar
Robbert Krebbers committed
39
  match goal with
40
  | H : context [@decide ?P ?dec] |- _ =>
41
    destruct_decide (@decide P dec)
42
  | H : context [@decide_rel _ _ ?R ?x ?y ?dec] |- _ =>
43
    destruct_decide (@decide_rel _ _ R x y dec)
44
  | |- context [@decide ?P ?dec] =>
45
    destruct_decide (@decide P dec)
46
  | |- context [@decide_rel _ _ ?R ?x ?y ?dec] =>
47
    destruct_decide (@decide_rel _ _ R x y dec)
Robbert Krebbers's avatar
Robbert Krebbers committed
48 49
  end.

50 51
(** The tactic [solve_decision] uses Coq's [decide equality] tactic together
with instance resolution to automatically generate decision procedures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
52 53
Ltac solve_trivial_decision :=
  match goal with
54 55
  | |- Decision (?P) => apply _
  | |- sumbool ?P (¬?P) => change (Decision P); apply _
Robbert Krebbers's avatar
Robbert Krebbers committed
56
  end.
57 58 59
Ltac solve_decision := intros; first
  [ solve_trivial_decision
  | unfold Decision; decide equality; solve_trivial_decision ].
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61 62 63 64 65 66 67 68 69 70 71
(** The following combinators are useful to create Decision proofs in
combination with the [refine] tactic. *)
Notation cast_if S := (if S then left _ else right _).
Notation cast_if_and S1 S2 := (if S1 then cast_if S2 else right _).
Notation cast_if_and3 S1 S2 S3 := (if S1 then cast_if_and S2 S3 else right _).
Notation cast_if_and4 S1 S2 S3 S4 :=
  (if S1 then cast_if_and3 S2 S3 S4 else right _).
Notation cast_if_or S1 S2 := (if S1 then left _ else cast_if S2).
Notation cast_if_not_or S1 S2 := (if S1 then cast_if S2 else left _).
Notation cast_if_not S := (if S then right _ else left _).

72 73 74
(** We can convert decidable propositions to booleans. *)
Definition bool_decide (P : Prop) {dec : Decision P} : bool :=
  if dec then true else false.
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76 77 78 79 80 81 82 83 84 85 86
Lemma bool_decide_reflect P `{dec : Decision P} : reflect P (bool_decide P).
Proof. unfold bool_decide. destruct dec. by left. by right. Qed.

Ltac case_bool_decide :=
  match goal with
  | H : context [@bool_decide ?P ?dec] |- _ =>
    destruct_decide (@bool_decide_reflect P dec)
  | |- context [@bool_decide ?P ?dec] =>
    destruct_decide (@bool_decide_reflect P dec)
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
87
Lemma bool_decide_unpack (P : Prop) {dec : Decision P} : bool_decide P  P.
88
Proof. unfold bool_decide. by destruct dec. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
89
Lemma bool_decide_pack (P : Prop) {dec : Decision P} : P  bool_decide P.
90
Proof. unfold bool_decide. by destruct dec. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
91

92 93 94 95
(** * Decidable Sigma types *)
(** Leibniz equality on Sigma types requires the equipped proofs to be
equal as Coq does not support proof irrelevance. For decidable we
propositions we define the type [dsig P] whose Leibniz equality is proof
96 97 98
irrelevant. That is [∀ x y : dsig P, x = y ↔ `x = `y]. Due to the absence of
universe polymorpic definitions we also define a variant [dsigS] for types
in [Set]. *)
99 100
Definition dsig `(P : A  Prop) `{ x : A, Decision (P x)} :=
  { x | bool_decide (P x) }.
101 102 103
Definition dsigS {A : Set} (P : A  Prop) `{ x : A, Decision (P x)} : Set :=
  { x | bool_decide (P x) }.

104 105 106 107
Definition proj2_dsig `{ x : A, Decision (P x)} (x : dsig P) : P (`x) :=
  bool_decide_unpack _ (proj2_sig x).
Definition dexist `{ x : A, Decision (P x)} (x : A) (p : P x) : dsig P :=
  xbool_decide_pack _ p.
108
Lemma dsig_eq `(P : A  Prop) `{ x, Decision (P x)}
109
  (x y : dsig P) : x = y  `x = `y.
Robbert Krebbers's avatar
Robbert Krebbers committed
110
Proof.
111 112 113 114 115
  split.
  * destruct x, y. apply proj1_sig_inj.
  * intro. destruct x as [x Hx], y as [y Hy].
    simpl in *. subst. f_equal.
    revert Hx Hy. case (bool_decide (P y)).
116 117
    + by intros [] [].
    + done.
Robbert Krebbers's avatar
Robbert Krebbers committed
118
Qed.
119 120 121
Lemma dexists_proj1 `(P : A  Prop) `{ x, Decision (P x)} (x : dsig P) p :
  dexist (`x) p = x.
Proof. by apply dsig_eq. Qed.
122

123 124 125
Global Instance dsig_eq_dec `(P : A  Prop) `{ x, Decision (P x)}
  `{ x y : A, Decision (x = y)} (x y : dsig P) : Decision (x = y).
Proof. refine (cast_if (decide (`x = `y))); by rewrite dsig_eq. Defined.
126

127 128
(** * Instances of Decision *)
(** Instances of [Decision] for operators of propositional logic. *)
129 130 131 132 133 134
Instance True_dec: Decision True := left I.
Instance False_dec: Decision False := right (False_rect False).

Section prop_dec.
  Context `(P_dec : Decision P) `(Q_dec : Decision Q).

135 136
  Global Instance not_dec: Decision (¬P).
  Proof. refine (cast_if_not P_dec); intuition. Defined.
137
  Global Instance and_dec: Decision (P  Q).
138
  Proof. refine (cast_if_and P_dec Q_dec); intuition. Defined.
139
  Global Instance or_dec: Decision (P  Q).
140
  Proof. refine (cast_if_or P_dec Q_dec); intuition. Defined.
141
  Global Instance impl_dec: Decision (P  Q).
142
  Proof. refine (if P_dec then cast_if Q_dec else left _); intuition. Defined.
143
End prop_dec.
144 145

(** Instances of [Decision] for common data types. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
146 147
Instance bool_eq_dec (x y : bool) : Decision (x = y).
Proof. solve_decision. Defined.
148 149 150
Instance unit_eq_dec (x y : unit) : Decision (x = y).
Proof. refine (left _); by destruct x, y. Defined.
Instance prod_eq_dec `(A_dec :  x y : A, Decision (x = y))
Robbert Krebbers's avatar
Robbert Krebbers committed
151
  `(B_dec :  x y : B, Decision (x = y)) (x y : A * B) : Decision (x = y).
152 153 154 155 156
Proof.
  refine (cast_if_and (A_dec (fst x) (fst y)) (B_dec (snd x) (snd y)));
    abstract (destruct x, y; simpl in *; congruence).
Defined.
Instance sum_eq_dec `(A_dec :  x y : A, Decision (x = y))
Robbert Krebbers's avatar
Robbert Krebbers committed
157
  `(B_dec :  x y : B, Decision (x = y)) (x y : A + B) : Decision (x = y).
158
Proof. solve_decision. Defined.
Robbert Krebbers's avatar
Robbert Krebbers committed
159 160 161 162 163 164 165 166

Instance curry_dec `(P_dec :  (x : A) (y : B), Decision (P x y)) p :
    Decision (curry P p) :=
  match p as p return Decision (curry P p) with
  | (x,y) => P_dec x y
  end.
Instance uncurry_dec `(P_dec :  (p : A * B), Decision (P p)) x y :
  Decision (uncurry P x y) := P_dec (x,y).