fin_maps.v 48.4 KB
Newer Older
1 2 3 4 5 6
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
induction principles for finite maps and implements the tactic [simplify_map]
to simplify goals involving finite maps. *)
7
Require Import Permutation.
Robbert Krebbers's avatar
Robbert Krebbers committed
8
Require Export prelude.
9 10
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
11 12 13 14 15
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
16 17 18 19 20

(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
implement the [dom] function, and for well founded recursion on finite maps. *)

21 22 23
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
24 25 26 27 28 29 30 31 32 33

Class FinMapToList K A M := finmap_to_list: M  list (K * A).

Class FinMap K M `{!FMap M}
    `{ A, Lookup K A (M A)}
    `{ A, Empty (M A)}
    `{ A, PartialAlter K A (M A)}
    `{ A, Merge A (M A)}
    `{ A, FinMapToList K A (M A)}
    `{ i j : K, Decision (i = j)} := {
34 35 36 37 38 39 40 41 42 43
  finmap_eq {A} (m1 m2 : M A) :
    ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i :
    ( : M A) !! i = None;
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
  lookup_fmap {A B} (f : A  B) (m : M A) i :
    (f <$> m) !! i = f <$> m !! i;
44 45 46 47
  finmap_to_list_nodup {A} (m : M A) :
    NoDup (finmap_to_list m);
  elem_of_finmap_to_list {A} (m : M A) i x :
    (i,x)  finmap_to_list m  m !! i = Some x;
48
  merge_spec {A} f `{!PropHolds (f None None = None)}
Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51
    (m1 m2 : M A) i : merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
}.

52 53 54
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
55 56 57 58 59
significant performance loss to make including them in the finite map interface
worthwhile. *)
Instance finmap_insert `{PartialAlter K A M} : Insert K A M := λ i x,
  partial_alter (λ _, Some x) i.
Instance finmap_alter `{PartialAlter K A M} : Alter K A M := λ f,
60
  partial_alter (fmap f).
61
Instance finmap_delete `{PartialAlter K A M} : Delete K M :=
62
  partial_alter (λ _, None).
63 64
Instance finmap_singleton `{PartialAlter K A M}
  `{Empty M} : Singleton (K * A) M := λ p, <[fst p:=snd p]>.
Robbert Krebbers's avatar
Robbert Krebbers committed
65

66 67 68 69
Definition finmap_of_list `{Insert K A M} `{Empty M}
  (l : list (K * A)) : M := insert_list l .
Instance finmap_dom `{FinMapToList K A M} : Dom K M := λ C _ _ _,
  foldr (()  singleton  fst)   finmap_to_list.
Robbert Krebbers's avatar
Robbert Krebbers committed
70

71
Instance finmap_union_with `{Merge A M} : UnionWith A M := λ f,
72
  merge (union_with f).
73
Instance finmap_intersection_with `{Merge A M} : IntersectionWith A M := λ f,
74
  merge (intersection_with f).
75
Instance finmap_difference_with `{Merge A M} : DifferenceWith A M := λ f,
76
  merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
77

78 79 80 81 82 83 84 85 86
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
Definition finmap_forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
  λ m,  i x, m !! i = Some x  P i x.
Definition finmap_intersection_forall `{Lookup K A M}
    (R : relation A) : relation M := λ m1 m2,
   i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2  R x1 x2.
Instance finmap_disjoint `{ A, Lookup K A (M A)} : Disjoint (M A) := λ A,
  finmap_intersection_forall (λ _ _, False).
87 88 89 90 91

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
92 93 94 95 96 97 98 99
Instance finmap_union `{Merge A M} : Union M :=
  union_with (λ x _, Some x).
Instance finmap_intersection `{Merge A M} : Intersection M :=
  union_with (λ x _, Some x).
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
Instance finmap_difference `{Merge A M} : Difference M :=
  difference_with (λ _ _, None).
100

101
(** * General theorems *)
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
Section finmap_common.
  Context `{FinMap K M} {A : Type}.

  Global Instance finmap_subseteq: SubsetEq (M A) := λ m n,
     i x, m !! i = Some x  n !! i = Some x.
  Global Instance: BoundedPreOrder (M A).
  Proof. split; [firstorder |]. intros m i x. by rewrite lookup_empty. Qed.

  Lemma lookup_weaken (m1 m2 : M A) i x :
    m1 !! i = Some x  m1  m2  m2 !! i = Some x.
  Proof. auto. Qed.
  Lemma lookup_weaken_is_Some (m1 m2 : M A) i :
    is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
  Proof. inversion 1. eauto using lookup_weaken. Qed.
  Lemma lookup_weaken_None (m1 m2 : M A) i :
    m2 !! i = None  m1  m2  m1 !! i = None.
  Proof.
    rewrite eq_None_not_Some. intros Hm2 Hm1m2.
    specialize (Hm1m2 i). destruct (m1 !! i); naive_solver.
  Qed.

  Lemma lookup_weaken_inv (m1 m2 : M A) i x y :
124
    m1 !! i = Some x 
125
    m1  m2 
126
    m2 !! i = Some y 
127
    x = y.
128
  Proof.
129 130
    intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto.
    congruence.
131
  Qed.
132 133 134 135 136 137 138 139 140 141 142 143

  Lemma lookup_ne (m : M A) i j : m !! i  m !! j  i  j.
  Proof. congruence. Qed.
  Lemma finmap_empty (m : M A) : ( i, m !! i = None)  m = .
  Proof. intros Hm. apply finmap_eq. intros. by rewrite Hm, lookup_empty. Qed.
  Lemma lookup_empty_is_Some i : ¬is_Some (( : M A) !! i).
  Proof. rewrite lookup_empty. by inversion 1. Qed.
  Lemma lookup_empty_Some i (x : A) : ¬ !! i = Some x.
  Proof. by rewrite lookup_empty. Qed.

  Lemma partial_alter_compose (m : M A) i f g :
    partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
144
  Proof.
145 146 147
    intros. apply finmap_eq. intros ii. case (decide (i = ii)).
    * intros. subst. by rewrite !lookup_partial_alter.
    * intros. by rewrite !lookup_partial_alter_ne.
148
  Qed.
149 150 151 152
  Lemma partial_alter_comm (m : M A) i j f g :
    i  j 
    partial_alter f i (partial_alter g j m) =
      partial_alter g j (partial_alter f i m).
Robbert Krebbers's avatar
Robbert Krebbers committed
153
  Proof.
154 155 156 157 158 159 160 161
    intros. apply finmap_eq. intros jj.
    destruct (decide (jj = j)).
    * subst. by rewrite lookup_partial_alter_ne,
       !lookup_partial_alter, lookup_partial_alter_ne.
    * destruct (decide (jj = i)).
      + subst. by rewrite lookup_partial_alter,
         !lookup_partial_alter_ne, lookup_partial_alter by congruence.
      + by rewrite !lookup_partial_alter_ne by congruence.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
  Qed.
163 164
  Lemma partial_alter_self_alt (m : M A) i x :
    x = m !! i  partial_alter (λ _, x) i m = m.
Robbert Krebbers's avatar
Robbert Krebbers committed
165
  Proof.
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    intros. apply finmap_eq. intros ii.
    destruct (decide (i = ii)).
    * subst. by rewrite lookup_partial_alter.
    * by rewrite lookup_partial_alter_ne.
  Qed.
  Lemma partial_alter_self (m : M A) i : partial_alter (λ _, m !! i) i m = m.
  Proof. by apply partial_alter_self_alt. Qed.

  Lemma lookup_insert (m : M A) i x : <[i:=x]>m !! i = Some x.
  Proof. unfold insert. apply lookup_partial_alter. Qed.
  Lemma lookup_insert_rev (m : M A) i x y : <[i:= x ]>m !! i = Some y  x = y.
  Proof. rewrite lookup_insert. congruence. Qed.
  Lemma lookup_insert_ne (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
  Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
  Lemma insert_comm (m : M A) i j x y :
    i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
  Proof. apply partial_alter_comm. Qed.

  Lemma lookup_insert_Some (m : M A) i j x y :
    <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
  Proof.
    split.
    * destruct (decide (i = j)); subst;
        rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
    * intros [[??]|[??]].
      + subst. apply lookup_insert.
      + by rewrite lookup_insert_ne.
  Qed.
  Lemma lookup_insert_None (m : M A) i j x :
    <[i:=x]>m !! j = None  m !! j = None  i  j.
  Proof.
    split.
    * destruct (decide (i = j)); subst;
        rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
    * intros [??]. by rewrite lookup_insert_ne.
  Qed.

  Lemma lookup_singleton_Some i j (x y : A) :
    {[(i, x)]} !! j = Some y  i = j  x = y.
  Proof.
    unfold singleton, finmap_singleton.
    rewrite lookup_insert_Some, lookup_empty. simpl.
    intuition congruence.
  Qed.
  Lemma lookup_singleton_None i j (x : A) :
    {[(i, x)]} !! j = None  i  j.
  Proof.
    unfold singleton, finmap_singleton.
    rewrite lookup_insert_None, lookup_empty. simpl. tauto.
  Qed.
  Lemma insert_singleton i (x y : A) : <[i:=y]>{[(i, x)]} = {[(i, y)]}.
  Proof.
    unfold singleton, finmap_singleton, insert, finmap_insert.
    by rewrite <-partial_alter_compose.
  Qed.

  Lemma lookup_singleton i (x : A) : {[(i, x)]} !! i = Some x.
  Proof. by rewrite lookup_singleton_Some. Qed.
  Lemma lookup_singleton_ne i j (x : A) : i  j  {[(i, x)]} !! j = None.
  Proof. by rewrite lookup_singleton_None. Qed.

  Lemma lookup_delete (m : M A) i : delete i m !! i = None.
  Proof. apply lookup_partial_alter. Qed.
  Lemma lookup_delete_ne (m : M A) i j : i  j  delete i m !! j = m !! j.
  Proof. apply lookup_partial_alter_ne. Qed.

  Lemma lookup_delete_Some (m : M A) i j y :
    delete i m !! j = Some y  i  j  m !! j = Some y.
  Proof.
    split.
    * destruct (decide (i = j)); subst;
        rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
    * intros [??]. by rewrite lookup_delete_ne.
  Qed.
  Lemma lookup_delete_None (m : M A) i j :
    delete i m !! j = None  i = j  m !! j = None.
  Proof.
    destruct (decide (i = j)).
    * subst. rewrite lookup_delete. tauto.
    * rewrite lookup_delete_ne; tauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
246 247
  Qed.

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
  Lemma delete_empty i : delete i ( : M A) = .
  Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
  Lemma delete_singleton i (x : A) : delete i {[(i, x)]} = .
  Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
  Lemma delete_comm (m : M A) i j :
    delete i (delete j m) = delete j (delete i m).
  Proof. destruct (decide (i = j)). by subst. by apply partial_alter_comm. Qed.
  Lemma delete_insert_comm (m : M A) i j x :
    i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
  Proof. intro. by apply partial_alter_comm. Qed.

  Lemma delete_notin (m : M A) i :
    m !! i = None  delete i m = m.
  Proof.
    intros. apply finmap_eq. intros j.
    destruct (decide (i = j)).
    * subst. by rewrite lookup_delete.
    * by apply lookup_delete_ne.
  Qed.

  Lemma delete_partial_alter (m : M A) i f :
    m !! i = None  delete i (partial_alter f i m) = m.
  Proof.
    intros. unfold delete, finmap_delete. rewrite <-partial_alter_compose.
    rapply partial_alter_self_alt. congruence.
  Qed.
  Lemma delete_insert (m : M A) i x :
    m !! i = None  delete i (<[i:=x]>m) = m.
  Proof. apply delete_partial_alter. Qed.
  Lemma insert_delete (m : M A) i x :
    m !! i = Some x  <[i:=x]>(delete i m) = m.
  Proof.
    intros Hmi. unfold delete, finmap_delete, insert, finmap_insert.
    rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
    by apply partial_alter_self_alt.
  Qed.

  Lemma lookup_delete_list (m : M A) is j :
    j  is  delete_list is m !! j = None.
  Proof.
    induction 1 as [|i j is]; simpl.
    * by rewrite lookup_delete.
    * destruct (decide (i = j)).
      + subst. by rewrite lookup_delete.
      + rewrite lookup_delete_ne; auto.
  Qed.
  Lemma lookup_delete_list_not_elem_of (m : M A) is j :
    j  is  delete_list is m !! j = m !! j.
  Proof.
    induction is; simpl; [done |].
    rewrite elem_of_cons. intros.
    intros. rewrite lookup_delete_ne; intuition.
  Qed.
  Lemma delete_list_notin (m : M A) is :
    Forall (λ i, m !! i = None) is  delete_list is m = m.
  Proof.
    induction 1; simpl; [done |].
    rewrite delete_notin; congruence.
  Qed.

  Lemma delete_list_insert_comm (m : M A) is j x :
    j  is  delete_list is (<[j:=x]>m) = <[j:=x]>(delete_list is m).
  Proof.
    induction is; simpl; [done |].
    rewrite elem_of_cons. intros.
    rewrite IHis, delete_insert_comm; intuition.
  Qed.

  Lemma elem_of_dom C `{SimpleCollection K C} (m : M A) i :
    i  dom C m  is_Some (m !! i).
  Proof.
    unfold dom, finmap_dom. simpl. rewrite is_Some_alt.
    setoid_rewrite <-elem_of_finmap_to_list.
    induction (finmap_to_list m) as [|[j x] l IH]; simpl.
    * rewrite elem_of_empty.
      setoid_rewrite elem_of_nil. naive_solver.
    * rewrite elem_of_union, elem_of_singleton.
      setoid_rewrite elem_of_cons. naive_solver.
  Qed.
  Lemma not_elem_of_dom C `{SimpleCollection K C} (m : M A) i :
    i  dom C m  m !! i = None.
  Proof. by rewrite (elem_of_dom C), eq_None_not_Some. Qed.

  Lemma dom_empty C `{SimpleCollection K C} : dom C ( : M A)  .
  Proof.
    split; intro.
    * rewrite (elem_of_dom C), lookup_empty. by inversion 1.
    * solve_elem_of.
  Qed.
  Lemma dom_empty_inv C `{SimpleCollection K C} (m : M A) :
    dom C m    m = .
  Proof.
    intros E. apply finmap_empty. intros. apply (not_elem_of_dom C).
    rewrite E. solve_elem_of.
  Qed.

  Lemma delete_partial_alter_dom C `{SimpleCollection K C} (m : M A) i f :
    i  dom C m  delete i (partial_alter f i m) = m.
  Proof. rewrite (not_elem_of_dom C). apply delete_partial_alter. Qed.
  Lemma delete_insert_dom C `{SimpleCollection K C} (m : M A) i x :
    i  dom C m  delete i (<[i:=x]>m) = m.
  Proof. rewrite (not_elem_of_dom C). apply delete_partial_alter. Qed.
  Lemma elem_of_dom_delete C `{SimpleCollection K C} (m : M A) i j :
    i  dom C (delete j m)  i  j  i  dom C m.
  Proof.
    rewrite !(elem_of_dom C), <-!not_eq_None_Some.
    rewrite lookup_delete_None. intuition.
  Qed.
  Lemma not_elem_of_dom_delete C `{SimpleCollection K C} (m : M A) i :
    i  dom C (delete i m).
  Proof. apply (not_elem_of_dom C), lookup_delete. Qed.

  Lemma subseteq_dom C `{SimpleCollection K C} (m1 m2 : M A) :
    m1  m2  dom C m1  dom C m2.
  Proof.
    unfold subseteq, finmap_subseteq, collection_subseteq.
    intros ??. rewrite !(elem_of_dom C). inversion 1. eauto.
  Qed.
  Lemma subset_dom C `{SimpleCollection K C} (m1 m2 : M A) :
    m1  m2  dom C m1  dom C m2.
  Proof.
    intros [Hss1 Hss2]. split.
    * by apply subseteq_dom.
    * intros Hdom. destruct Hss2. intros i x Hi.
      specialize (Hdom i). rewrite !(elem_of_dom C) in Hdom.
      feed inversion Hdom. eauto.
      by erewrite (Hss1 i) in Hi by eauto.
  Qed.
  Lemma finmap_wf : wf (@subset (M A) _).
  Proof.
    apply (wf_projected () (dom (listset K))).
    * by apply (subset_dom _).
    * by apply collection_wf.
  Qed.

  Lemma partial_alter_subseteq (m : M A) i f :
    m !! i = None 
    m  partial_alter f i m.
  Proof.
    intros Hi j x Hj. rewrite lookup_partial_alter_ne; congruence.
  Qed.
  Lemma partial_alter_subset (m : M A) i f :
    m !! i = None 
    is_Some (f (m !! i)) 
    m  partial_alter f i m.
  Proof.
    intros Hi Hfi. split.
    * by apply partial_alter_subseteq.
    * inversion Hfi as [x Hx]. intros Hm.
      apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
      by rewrite lookup_partial_alter.
  Qed.
  Lemma insert_subseteq (m : M A) i x :
    m !! i = None 
    m  <[i:=x]>m.
  Proof. apply partial_alter_subseteq. Qed.
  Lemma insert_subset (m : M A) i x :
    m !! i = None 
    m  <[i:=x]>m.
  Proof. intro. apply partial_alter_subset; eauto. Qed.

  Lemma delete_subseteq (m : M A) i :
    delete i m  m.
  Proof. intros j x. rewrite lookup_delete_Some. tauto. Qed.
  Lemma delete_subseteq_compat (m1 m2 : M A) i :
    m1  m2 
    delete i m1  delete i m2.
  Proof. intros ? j x. rewrite !lookup_delete_Some. intuition eauto. Qed.
  Lemma delete_subset_alt (m : M A) i x :
    m !! i = Some x  delete i m  m.
  Proof.
    split.
    * apply delete_subseteq.
    * intros Hi. apply (None_ne_Some x).
      by rewrite <-(lookup_delete m i), (Hi i x).
  Qed.
  Lemma delete_subset (m : M A) i :
    is_Some (m !! i)  delete i m  m.
  Proof. inversion 1. eauto using delete_subset_alt. Qed.

  (** * Induction principles *)
  (** We use the induction principle on finite collections to prove the
  following induction principle on finite maps. *)
  Lemma finmap_ind_alt C (P : M A  Prop) `{FinCollection K C} :
    P  
    ( i x m, i  dom C m  P m  P (<[i:=x]>m)) 
     m, P m.
  Proof.
    intros Hemp Hinsert m.
    apply (collection_ind (λ X,  m, dom C m  X  P m)) with (dom C m).
    * solve_proper.
    * clear m. intros m Hm. rewrite finmap_empty.
      + done.
      + intros. rewrite <-(not_elem_of_dom C), Hm.
        by solve_elem_of.
    * clear m. intros i X Hi IH m Hdom.
      assert ( x, m !! i = Some x) as [x ?].
      { apply is_Some_alt, (elem_of_dom C).
        rewrite Hdom. clear Hdom.
        by solve_elem_of. }
      rewrite <-(insert_delete m i x) by done.
      apply Hinsert.
      { by apply (not_elem_of_dom_delete C). }
      apply IH. apply elem_of_equiv. intros.
      rewrite (elem_of_dom_delete C).
      esolve_elem_of.
    * done.
  Qed.

  (** We use the [listset] implementation to prove an induction principle that
  does not use the map's domain. *)
  Lemma finmap_ind (P : M A  Prop) :
    P  
    ( i x m, m !! i = None  P m  P (<[i:=x]>m)) 
     m, P m.
  Proof.
    setoid_rewrite <-(not_elem_of_dom (listset _)).
    apply (finmap_ind_alt (listset _) P).
  Qed.
End finmap_common.
468

469 470
(** * The finite map tactic *)
(** The tactic [simplify_map by tac] simplifies finite map expressions
471
occuring in the conclusion and hypotheses. It uses [tac] to discharge generated
472
inequalities. *)
473
Tactic Notation "simpl_map" "by" tactic3(tac) := repeat
474 475 476
  match goal with
  | H : context[  !! _ ] |- _ => rewrite lookup_empty in H
  | H : context[ (<[_:=_]>_) !! _ ] |- _ => rewrite lookup_insert in H
477 478 479
  | H : context[ (<[_:=_]>_) !! _ ] |- _ => rewrite lookup_insert_ne in H by tac
  | H : context[ (delete _ _) !! _] |- _ => rewrite lookup_delete in H
  | H : context[ (delete _ _) !! _] |- _ => rewrite lookup_delete_ne in H by tac
480
  | H : context[ {[ _ ]} !! _ ] |- _ => rewrite lookup_singleton in H
481
  | H : context[ {[ _ ]} !! _ ] |- _ => rewrite lookup_singleton_ne in H by tac
482 483
  | |- context[  !! _ ] => rewrite lookup_empty
  | |- context[ (<[_:=_]>_) !! _ ] => rewrite lookup_insert
484
  | |- context[ (<[_:=_]>_) !! _ ] => rewrite lookup_insert_ne by tac
485
  | |- context[ (delete _ _) !! _ ] => rewrite lookup_delete
486
  | |- context[ (delete _ _) !! _ ] => rewrite lookup_delete_ne by tac
487
  | |- context[ {[ _ ]} !! _ ] => rewrite lookup_singleton
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
  | |- context[ {[ _ ]} !! _ ] => rewrite lookup_singleton_ne by tac
  | |- context [ lookup (A:=?A) ?i ?m ] =>
     let x := fresh in evar (x:A);
     let x' := eval unfold x in x in clear x;
     let E := fresh in
     assert (m !! i = Some x') as E by tac;
     rewrite E; clear E
  end.

Create HintDb simpl_map.
Tactic Notation "simpl_map" := simpl_map by eauto with simpl_map.
Tactic Notation "simplify_map_equality" "by" tactic3(tac) := repeat
  match goal with
  | _ => progress simpl_map by tac
  | _ => progress simplify_equality
  | H : {[ _ ]} !! _ = None |- _ => rewrite lookup_singleton_None in H
  | H : {[ _ ]} !! _ = Some _ |- _ =>
     rewrite lookup_singleton_Some in H; destruct H
  | H1 : ?m1 !! ?i = Some ?x, H2 : ?m2 !! ?i = Some ?y |- _ =>
    let H3 := fresh in
    feed pose proof (lookup_weaken_inv m1 m2 i x y) as H3;
      [done | by tac | done | ];
    clear H2; symmetry in H3
  | H1 : ?m1 !! ?i = Some ?x, H2 : ?m2 !! ?i = None |- _ =>
    let H3 := fresh in
    assert (m1  m2) as H3 by tac;
    apply H3 in H1; congruence
  end.
Tactic Notation "simplify_map_equality" :=
  simplify_map_equality by eauto with simpl_map.

(** * More theorems on finite maps *)
Section finmap_more.
  Context `{FinMap K M} {A : Type}.

  (** ** Properties of conversion to lists *)
  Lemma finmap_to_list_unique (m : M A) i x y :
    (i,x)  finmap_to_list m 
    (i,y)  finmap_to_list m 
    x = y.
  Proof. rewrite !elem_of_finmap_to_list. congruence. Qed.
  Lemma finmap_to_list_key_nodup (m : M A) :
    NoDup (fst <$> finmap_to_list m).
  Proof.
    eauto using NoDup_fmap_fst, finmap_to_list_unique, finmap_to_list_nodup.
  Qed.

  Lemma elem_of_finmap_of_list_1 (l : list (K * A)) i x :
    NoDup (fst <$> l)  (i,x)  l  finmap_of_list l !! i = Some x.
  Proof.
    induction l as [|[j y] l IH]; simpl.
    * by rewrite elem_of_nil.
    * rewrite NoDup_cons, elem_of_cons, elem_of_list_fmap.
      intros [Hl ?] [?|?]; simplify_map_equality; [done |].
      destruct (decide (i = j)); simplify_map_equality; [|done].
      destruct Hl. by exists (j,x).
  Qed.
  Lemma elem_of_finmap_of_list_2 (l : list (K * A)) i x :
    finmap_of_list l !! i = Some x  (i,x)  l.
  Proof.
    induction l as [|[j y] l IH]; simpl.
    * by rewrite lookup_empty.
    * rewrite elem_of_cons. destruct (decide (i = j));
        simplify_map_equality; intuition congruence.
  Qed.
  Lemma elem_of_finmap_of_list (l : list (K * A)) i x :
    NoDup (fst <$> l) 
    (i,x)  l  finmap_of_list l !! i = Some x.
  Proof.
    split; auto using elem_of_finmap_of_list_1, elem_of_finmap_of_list_2.
  Qed.

  Lemma not_elem_of_finmap_of_list_1 (l : list (K * A)) i :
    i  fst <$> l  finmap_of_list l !! i = None.
  Proof.
    rewrite elem_of_list_fmap, eq_None_not_Some, is_Some_alt.
    intros Hi [x ?]. destruct Hi. exists (i,x). simpl.
    auto using elem_of_finmap_of_list_2.
  Qed.
  Lemma not_elem_of_finmap_of_list_2 (l : list (K * A)) i :
    finmap_of_list l !! i = None  i  fst <$> l.
  Proof.
    induction l as [|[j y] l IH]; simpl.
    * rewrite elem_of_nil. tauto.
    * rewrite elem_of_cons.
      destruct (decide (i = j)); simplify_map_equality; by intuition.
  Qed.
  Lemma not_elem_of_finmap_of_list (l : list (K * A)) i :
    i  fst <$> l  finmap_of_list l !! i = None.
  Proof.
    split; auto using not_elem_of_finmap_of_list_1,
      not_elem_of_finmap_of_list_2.
  Qed.

  Lemma finmap_of_list_proper (l1 l2 : list (K * A)) :
    NoDup (fst <$> l1) 
    Permutation l1 l2 
    finmap_of_list l1 = finmap_of_list l2.
  Proof.
    intros ? Hperm. apply finmap_eq. intros i. apply option_eq. intros x.
    by rewrite <-!elem_of_finmap_of_list; rewrite <-?Hperm.
  Qed.
  Lemma finmap_of_list_inj (l1 l2 : list (K * A)) :
    NoDup (fst <$> l1) 
    NoDup (fst <$> l2) 
    finmap_of_list l1 = finmap_of_list l2 
    Permutation l1 l2.
  Proof.
    intros ?? Hl1l2.
    apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
    intros [i x]. by rewrite !elem_of_finmap_of_list, Hl1l2.
  Qed.
  Lemma finmap_of_to_list (m : M A) :
    finmap_of_list (finmap_to_list m) = m.
  Proof.
    apply finmap_eq. intros i. apply option_eq. intros x.
    by rewrite <-elem_of_finmap_of_list, elem_of_finmap_to_list
      by auto using finmap_to_list_key_nodup.
  Qed.
  Lemma finmap_to_of_list (l : list (K * A)) :
    NoDup (fst <$> l) 
    Permutation (finmap_to_list (finmap_of_list l)) l.
  Proof.
    auto using finmap_of_list_inj,
      finmap_to_list_key_nodup, finmap_of_to_list.
  Qed.
  Lemma finmap_to_list_inj (m1 m2 : M A) :
    Permutation (finmap_to_list m1) (finmap_to_list m2) 
    m1 = m2.
  Proof.
    intros.
    rewrite <-(finmap_of_to_list m1), <-(finmap_of_to_list m2).
    auto using finmap_of_list_proper, finmap_to_list_key_nodup.
  Qed.

  Lemma finmap_to_list_empty :
    finmap_to_list  = @nil (K * A).
  Proof.
    apply elem_of_nil_inv. intros [i x].
    rewrite elem_of_finmap_to_list. apply lookup_empty_Some.
  Qed.
  Lemma finmap_to_list_insert (m : M A) i x :
    m !! i = None 
    Permutation (finmap_to_list (<[i:=x]>m)) ((i,x) :: finmap_to_list m).
  Proof.
    intros. apply finmap_of_list_inj; simpl.
    * apply finmap_to_list_key_nodup.
    * constructor; auto using finmap_to_list_key_nodup.
      rewrite elem_of_list_fmap.
      intros [[??] [? Hlookup]]; subst; simpl in *.
      rewrite elem_of_finmap_to_list in Hlookup. congruence.
    * by rewrite !finmap_of_to_list.
  Qed.

  Lemma finmap_of_list_nil :
    finmap_of_list (@nil (K * A)) = .
  Proof. done. Qed.
  Lemma finmap_of_list_cons (l : list (K * A)) i x :
    finmap_of_list ((i, x) :: l) = <[i:=x]>(finmap_of_list l).
  Proof. done. Qed.

  Lemma finmap_to_list_empty_inv (m : M A) :
    Permutation (finmap_to_list m) []  m = .
  Proof. rewrite <-finmap_to_list_empty. apply finmap_to_list_inj. Qed.
  Lemma finmap_to_list_insert_inv (m : M A) l i x :
    Permutation (finmap_to_list m) ((i,x) :: l) 
    m = <[i:=x]>(finmap_of_list l).
  Proof.
    intros Hperm. apply finmap_to_list_inj.
    assert (NoDup (fst <$> (i, x) :: l)) as Hnodup.
    { rewrite <-Hperm. auto using finmap_to_list_key_nodup. }
    simpl in Hnodup. rewrite NoDup_cons in Hnodup.
    destruct Hnodup.
    rewrite Hperm, finmap_to_list_insert, finmap_to_of_list;
      auto using not_elem_of_finmap_of_list_1.
  Qed.

  (** ** Properties of the forall predicate *)
  Section finmap_forall.
    Context (P : K  A  Prop).

    Lemma finmap_forall_to_list m :
      finmap_forall P m  Forall (curry P) (finmap_to_list m).
    Proof.
      rewrite Forall_forall. split.
      * intros Hforall [i x].
        rewrite elem_of_finmap_to_list. by apply (Hforall i x).
      * intros Hforall i x.
        rewrite <-elem_of_finmap_to_list. by apply (Hforall (i,x)).
    Qed.

    Global Instance finmap_forall_dec
      `{ i x, Decision (P i x)} m : Decision (finmap_forall P m).
    Proof.
      refine (cast_if (decide (Forall (curry P) (finmap_to_list m))));
        by rewrite finmap_forall_to_list.
    Defined.
  End finmap_forall.

  (** ** Properties of the merge operation *)
  Section merge_with.
    Context (f : option A  option A  option A).

    Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
    Proof.
      intros ??. apply finmap_eq. intros.
      by rewrite !(merge_spec f), lookup_empty, (left_id None f).
    Qed.
    Global Instance: RightId (=) None f  RightId (=)  (merge f).
    Proof.
      intros ??. apply finmap_eq. intros.
      by rewrite !(merge_spec f), lookup_empty, (right_id None f).
    Qed.

    Context `{!PropHolds (f None None = None)}.

    Lemma merge_spec_alt m1 m2 m :
      ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
    Proof.
      split; [| intro; subst; apply (merge_spec _) ].
      intros Hlookup. apply finmap_eq. intros. rewrite Hlookup.
      apply (merge_spec _).
    Qed.

    Lemma merge_commutative m1 m2 :
      ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
      merge f m1 m2 = merge f m2 m1.
    Proof. intros. apply finmap_eq. intros. by rewrite !(merge_spec f). Qed.
    Global Instance: Commutative (=) f  Commutative (=) (merge f).
    Proof.
      intros ???. apply merge_commutative. intros. by apply (commutative f).
    Qed.

    Lemma merge_associative m1 m2 m3 :
      ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
            f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
      merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
    Proof. intros. apply finmap_eq. intros. by rewrite !(merge_spec f). Qed.
    Global Instance: Associative (=) f  Associative (=) (merge f).
    Proof.
      intros ????. apply merge_associative. intros. by apply (associative f).
    Qed.

    Lemma merge_idempotent m1 :
      ( i, f (m1 !! i) (m1 !! i) = m1 !! i) 
      merge f m1 m1 = m1.
    Proof. intros. apply finmap_eq. intros. by rewrite !(merge_spec f). Qed.
    Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
    Proof.
      intros ??. apply merge_idempotent. intros. by apply (idempotent f).
    Qed.
  End merge_with.

  (** ** Properties on the intersection forall relation *)
  Section intersection_forall.
    Context (R : relation A).

    Global Instance finmap_intersection_forall_sym:
      Symmetric R  Symmetric (finmap_intersection_forall R).
    Proof. firstorder auto. Qed.
    Lemma finmap_intersection_forall_empty_l (m : M A) :
      finmap_intersection_forall R  m.
    Proof. intros ???. by simpl_map. Qed.
    Lemma finmap_intersection_forall_empty_r (m : M A) :
      finmap_intersection_forall R m .
    Proof. intros ???. by simpl_map. Qed.

    (** Due to the finiteness of finite maps, we can extract a witness are
    property does not hold for the intersection. *)
    Lemma finmap_not_intersection_forall `{ x y, Decision (R x y)} (m1 m2 : M A) :
      ¬finmap_intersection_forall R m1 m2
          i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2  ¬R x1 x2.
    Proof.
      split.
      * intros Hdisjoint.
        set (Pi i :=  x1 x2, m1 !! i = Some x1  m2 !! i = Some x2  ¬R x1 x2).
        assert ( i, Decision (Pi i)).
        { intros i. unfold Decision, Pi.
          destruct (m1 !! i) as [x1|], (m2 !! i) as [x2|]; try (by left).
          destruct (decide (R x1 x2)).
          * naive_solver.
          * intuition congruence. }
        destruct (decide (cexists Pi (dom (listset _) m1  dom (listset _) m2)))
          as [[i [Hdom Hi]] | Hi].
        + rewrite elem_of_intersection in Hdom.
          rewrite !(elem_of_dom (listset _)), !is_Some_alt in Hdom.
          destruct Hdom as [[x1 ?] [x2 ?]]. exists i x1 x2; auto.
        + destruct Hdisjoint. intros i x1 x2 Hx1 Hx2.
          apply dec_stable. intros HP.
          destruct Hi. exists i.
          rewrite elem_of_intersection, !(elem_of_dom (listset _)).
          intuition eauto; congruence.
      * intros (i & x1 & x2 & Hx1 & Hx2 & Hx1x2) Hdisjoint.
        by apply Hx1x2, (Hdisjoint i x1 x2).
    Qed.
  End intersection_forall.

  (** ** Properties on the disjoint maps *)
  Lemma finmap_disjoint_alt (m1 m2 : M A) :
    m1  m2   i, m1 !! i = None  m2 !! i = None.
  Proof.
    split; intros Hm1m2 i; specialize (Hm1m2 i);
      destruct (m1 !! i), (m2 !! i); naive_solver.
  Qed.    
  Lemma finmap_not_disjoint (m1 m2 : M A) :
    ¬m1  m2   i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2.
  Proof.
    unfold disjoint, finmap_disjoint.
    rewrite finmap_not_intersection_forall.
    * naive_solver.
    * right. auto.
  Qed.

  Global Instance: Symmetric (@disjoint (M A) _).
  Proof. apply finmap_intersection_forall_sym. auto. Qed.
  Lemma finmap_disjoint_empty_l (m : M A) :   m.
  Proof. apply finmap_intersection_forall_empty_l. Qed.
  Lemma finmap_disjoint_empty_r (m : M A) : m  .
  Proof. apply finmap_intersection_forall_empty_r. Qed.

  Lemma finmap_disjoint_weaken (m1 m1' m2 m2' : M A) :
    m1'  m2' 
    m1  m1'  m2  m2' 
    m1  m2.
  Proof.
    intros Hdisjoint Hm1 Hm2 i x1 x2 Hx1 Hx2.
    destruct (Hdisjoint i x1 x2); auto.
  Qed.
  Lemma finmap_disjoint_weaken_l (m1 m1' m2  : M A) :
    m1'  m2  m1  m1'  m1  m2.
  Proof. eauto using finmap_disjoint_weaken. Qed.
  Lemma finmap_disjoint_weaken_r (m1 m2 m2' : M A) :
    m1  m2'  m2  m2'  m1  m2.
  Proof. eauto using finmap_disjoint_weaken. Qed.

  Lemma finmap_disjoint_Some_l (m1 m2 : M A) i x:
    m1  m2 
    m1 !! i = Some x 
    m2 !! i = None.
  Proof.
    intros Hdisjoint ?. rewrite eq_None_not_Some, is_Some_alt.
    intros [x2 ?]. by apply (Hdisjoint i x x2).
  Qed.
  Lemma finmap_disjoint_Some_r (m1 m2 : M A) i x:
    m1  m2 
    m2 !! i = Some x 
    m1 !! i = None.
  Proof. rewrite (symmetry_iff ()). apply finmap_disjoint_Some_l. Qed.

  Lemma finmap_disjoint_singleton_l (m : M A) i x :
    {[(i, x)]}  m  m !! i = None.
  Proof.
    split.
    * intro. apply (finmap_disjoint_Some_l {[(i, x)]} _ _ x); by simpl_map.
    * intros ? j y1 y2 ??.
      destruct (decide (i = j)); simplify_map_equality; congruence.
  Qed.
  Lemma finmap_disjoint_singleton_r (m : M A) i x :
    m  {[(i, x)]}  m !! i = None.
  Proof. by rewrite (symmetry_iff ()), finmap_disjoint_singleton_l. Qed.

  Lemma finmap_disjoint_singleton_l_2 (m : M A) i x :
    m !! i = None  {[(i, x)]}  m.
  Proof. by rewrite finmap_disjoint_singleton_l. Qed.
  Lemma finmap_disjoint_singleton_r_2 (m : M A) i x :
    m !! i = None  m  {[(i, x)]}.
  Proof. by rewrite finmap_disjoint_singleton_r. Qed.

  (** ** Properties of the union and intersection operation *)
  Section union_intersection_with.
    Context (f : A  A  option A).

    Lemma finmap_union_with_Some m1 m2 i x y :
      m1 !! i = Some x 
      m2 !! i = Some y 
      union_with f m1 m2 !! i = f x y.
    Proof.
      intros Hx Hy. unfold union_with, finmap_union_with.
      by rewrite (merge_spec _), Hx, Hy.
    Qed.
    Lemma finmap_union_with_Some_l m1 m2 i x :
      m1 !! i = Some x 
      m2 !! i = None 
      union_with f m1 m2 !! i = Some x.
    Proof.
      intros Hx Hy. unfold union_with, finmap_union_with.
      by rewrite (merge_spec _), Hx, Hy.
    Qed.
    Lemma finmap_union_with_Some_r m1 m2 i y :
      m1 !! i = None 
      m2 !! i = Some y 
      union_with f m1 m2 !! i = Some y.
    Proof.
      intros Hx Hy. unfold union_with, finmap_union_with.
      by rewrite (merge_spec _), Hx, Hy.
    Qed.

    Global Instance: LeftId (=)  (@union_with _ (M A) _ f).
    Proof. unfold union_with, finmap_union_with. apply _. Qed.
    Global Instance: RightId (=)  (@union_with _ (M A) _ f).
    Proof. unfold union_with, finmap_union_with. apply _. Qed.
    Global Instance:
      Commutative (=) f  Commutative (=) (@union_with _ (M A) _ f).
    Proof. unfold union_with, finmap_union_with. apply _. Qed.
  End union_intersection_with.

  Global Instance: LeftId (=)  (@union (M A) _) := _.
  Global Instance: RightId (=)  (@union (M A) _) := _.
  Global Instance: Associative (=) (@union (M A) _).
  Proof.
    intros m1 m2 m3. unfold union, finmap_union, union_with, finmap_union_with.
    apply (merge_associative _). intros i.
    by destruct (m1 !! i), (m2 !! i), (m3 !! i).
  Qed.
  Global Instance: Idempotent (=) (@union (M A) _).
    intros m. unfold union, finmap_union, union_with, finmap_union_with.
    apply (merge_idempotent _). intros i. by destruct (m !! i).
  Qed.

  Lemma lookup_union_Some_raw (m1 m2 : M A) i x :
    (m1  m2) !! i = Some x 
      m1 !! i = Some x  (m1 !! i = None  m2 !! i = Some x).
  Proof.
    unfold union, finmap_union, union_with, finmap_union_with.
    rewrite (merge_spec _).
    destruct (m1 !! i), (m2 !! i); compute; intuition congruence.
  Qed.
  Lemma lookup_union_None (m1 m2 : M A) i :
    (m1  m2) !! i = None  m1 !! i = None  m2 !! i = None.
  Proof.
    unfold union, finmap_union, union_with, finmap_union_with.
    rewrite (merge_spec _).
    destruct (m1 !! i), (m2 !! i); compute; intuition congruence.
  Qed.

  Lemma lookup_union_Some (m1 m2 : M A) i x :
    m1  m2 
    (m1  m2) !! i = Some x  m1 !! i = Some x  m2 !! i = Some x.
  Proof.
    intros Hdisjoint. rewrite lookup_union_Some_raw.
    intuition eauto using finmap_disjoint_Some_r.
  Qed.

  Lemma lookup_union_Some_l (m1 m2 : M A) i x :
    m1 !! i = Some x 
    (m1  m2) !! i = Some x.
  Proof. intro. rewrite lookup_union_Some_raw; intuition. Qed.
  Lemma lookup_union_Some_r (m1 m2 : M A) i x :
    m1  m2 
    m2 !! i = Some x 
    (m1  m2) !! i = Some x.
  Proof. intro. rewrite lookup_union_Some; intuition. Qed.

  Lemma finmap_union_comm (m1 m2 : M A) :
    m1  m2 
    m1  m2 = m2  m1.
  Proof.
    intros Hdisjoint. apply (merge_commutative (union_with (λ x _, Some x))).
    intros i. specialize (Hdisjoint i).
    destruct (m1 !! i), (m2 !! i); compute; naive_solver.
  Qed.

  Lemma finmap_subseteq_union (m1 m2 : M A) :
    m1  m2 
    m1  m2 = m2.
  Proof.
    intros Hm1m2.
    apply finmap_eq. intros i. apply option_eq. intros x.
    rewrite lookup_union_Some_raw. split; [by intuition |].
    intros Hm2. specialize (Hm1m2 i).
    destruct (m1 !! i) as [y|]; [| by auto].
    rewrite (Hm1m2 y eq_refl) in Hm2. intuition congruence.
  Qed.
  Lemma finmap_subseteq_union_l (m1 m2 : M A) :
    m1  m1  m2.
  Proof. intros ? i x. rewrite lookup_union_Some_raw. intuition. Qed.
  Lemma finmap_subseteq_union_r (m1 m2 : M A) :
    m1  m2 
    m2  m1  m2.
  Proof.
    intros. rewrite finmap_union_comm by done.
    by apply finmap_subseteq_union_l.
  Qed.

  Lemma finmap_disjoint_union_l (m1 m2 m3 : M A) :
    m1  m2  m3  m1  m3  m2  m3.
  Proof.
    rewrite !finmap_disjoint_alt.
    setoid_rewrite lookup_union_None. naive_solver.
  Qed.
  Lemma finmap_disjoint_union_r (m1 m2 m3 : M A) :
    m1  m2  m3  m1  m2  m1  m3.
  Proof.
    rewrite !finmap_disjoint_alt.
    setoid_rewrite lookup_union_None. naive_solver.
  Qed.
  Lemma finmap_disjoint_union_l_2 (m1 m2 m3 : M A) :
    m1  m3  m2  m3  m1  m2  m3.
  Proof. by rewrite finmap_disjoint_union_l. Qed.
  Lemma finmap_disjoint_union_r_2 (m1 m2 m3 : M A) :
    m1  m2  m1  m3  m1  m2  m3.
  Proof. by rewrite finmap_disjoint_union_r. Qed.
  Lemma finmap_union_cancel_l (m1 m2 m3 : M A) :
    m1  m3 
    m2  m3 
    m1  m3 = m2  m3 
    m1 = m2.
  Proof.
    revert m1 m2 m3.
    cut ( (m1 m2 m3 : M A) i x,
      m1  m3 
      m2  m3 
      m1  m3 = m2  m3 
      m1 !! i = Some x  m2 !! i = Some x).
    { intros. apply finmap_eq. intros i.
      apply option_eq. naive_solver. }
    intros m1 m2 m3 b v Hm1m3 Hm2m3 E ?.
    destruct (proj1 (lookup_union_Some m2 m3 b v Hm2m3)) as [E2|E2].
    * rewrite <-E. by apply lookup_union_Some_l.
    * done.
    * contradict E2. by apply eq_None_ne_Some, finmap_disjoint_Some_l with m1 v.
  Qed.
  Lemma finmap_union_cancel_r (m1 m2 m3 : M A) :
    m1  m3 
    m2  m3 
    m3  m1 = m3  m2 
    m1 = m2.
  Proof.
    intros ??. rewrite !(finmap_union_comm m3) by done.
    by apply finmap_union_cancel_l.
  Qed.

  Lemma insert_union_singleton_l (m : M A) i x :
    <[i:=x]>m = {[(i,x)]}  m.
  Proof.
    apply finmap_eq. intros j. apply option_eq. intros y.
    rewrite lookup_union_Some_raw.
    destruct (decide (i = j)); simplify_map_equality; intuition congruence.
  Qed.
  Lemma insert_union_singleton_r (m : M A) i x :
    m !! i = None 
    <[i:=x]>m = m  {[(i,x)]}.
  Proof.
    intro. rewrite insert_union_singleton_l, finmap_union_comm; [done |].
    by apply finmap_disjoint_singleton_l.
  Qed.

  Lemma finmap_disjoint_insert_l (m1 m2 : M A) i x :
    <[i:=x]>m1  m2  m2 !! i = None  m1  m2.
  Proof.
    rewrite insert_union_singleton_l.
    by rewrite finmap_disjoint_union_l, finmap_disjoint_singleton_l.
  Qed.
  Lemma finmap_disjoint_insert_r (m1 m2 : M A) i x :
    m1  <[i:=x]>m2  m1 !! i = None  m1  m2.
  Proof.
    rewrite insert_union_singleton_l.
    by rewrite finmap_disjoint_union_r, finmap_disjoint_singleton_r.
  Qed.

  Lemma finmap_disjoint_insert_l_2 (m1 m2 : M A) i x :
    m2 !! i = None  m1  m2  <[i:=x]>m1  m2.
  Proof. by rewrite finmap_disjoint_insert_l. Qed.
  Lemma finmap_disjoint_insert_r_2 (m1 m2 : M A) i x :
    m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
  Proof. by rewrite finmap_disjoint_insert_r. Qed.

  Lemma insert_union_l (m1 m2 : M A) i x :
    <[i:=x]>(m1  m2) = <[i:=x]>m1  m2.
  Proof. by rewrite !insert_union_singleton_l, (associative ()). Qed.
  Lemma insert_union_r (m1 m2 : M A) i x :
    m1 !! i = None 
    <[i:=x]>(m1  m2) = m1  <[i:=x]>m2.
  Proof.
    intro. rewrite !insert_union_singleton_l, !(associative ()).
    rewrite (finmap_union_comm m1); [done |].
    by apply finmap_disjoint_singleton_r.
  Qed.

  Lemma insert_list_union l (m : M A) :
    insert_list l m = finmap_of_list l  m.
  Proof.
    induction l; simpl.
    * by rewrite (left_id _ _).
    * by rewrite IHl, insert_union_l.
  Qed.

  Lemma insert_subseteq_r (m1 m2 : M A) i x :
    m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
  Proof.
    intros ?? j. by destruct (decide (j = i)); intros; simplify_map_equality.
  Qed.

  (** ** Properties of the delete operation *)
  Lemma finmap_disjoint_delete_l (m1 m2 : M A) i :
    m1  m2  delete i m1  m2.
  Proof.
    rewrite !finmap_disjoint_alt.
    intros Hdisjoint j. destruct (Hdisjoint j); auto.
    rewrite lookup_delete_None. tauto.
  Qed.
  Lemma finmap_disjoint_delete_r (m1 m2 : M A) i :
    m1  m2  m1  delete i m2.
  Proof. symmetry. by apply finmap_disjoint_delete_l. Qed.

  Lemma finmap_disjoint_delete_list_l (m1 m2 : M A) is :
    m1  m2  delete_list is m1  m2.
  Proof. induction is; simpl; auto using finmap_disjoint_delete_l. Qed.
  Lemma finmap_disjoint_delete_list_r (m1 m2 : M A) is :
    m1  m2  m1  delete_list is m2.
  Proof. induction is; simpl; auto using finmap_disjoint_delete_r. Qed.

  Lemma finmap_union_delete (m1 m2 : M A) i :
    delete i (m1  m2) = delete i m1  delete i m2.
  Proof.
    intros. apply finmap_eq. intros j. apply option_eq. intros y.
    destruct (decide (i = j)); simplify_map_equality;
     rewrite ?lookup_union_Some_raw; simpl_map; intuition congruence.
  Qed.
  Lemma finmap_union_delete_list (m1 m2 : M A) is :
    delete_list is (m1  m2) = delete_list is m1  delete_list is m2.
  Proof.
    induction is; simpl; [done |].
    by rewrite IHis, finmap_union_delete.
  Qed.

  Lemma finmap_disjoint_union_list_l (ms : list (M A)) (m : M A) :
     ms  m  Forall ( m) ms.
  Proof.
    split.
    * induction ms; simpl; rewrite ?finmap_disjoint_union_l; intuition.
    * induction 1; simpl.
      + apply finmap_disjoint_empty_l.
      + by rewrite finmap_disjoint_union_l.
  Qed.
  Lemma finmap_disjoint_union_list_r (ms : list (M A)) (m : M A) :
    m   ms  Forall ( m) ms.
  Proof. by rewrite (symmetry_iff ()), finmap_disjoint_union_list_l. Qed.

  Lemma finmap_disjoint_union_list_l_2 (ms : list (M A)) (m : M A) :
    Forall ( m) ms   ms  m.
  Proof. by rewrite finmap_disjoint_union_list_l. Qed.
  Lemma finmap_disjoint_union_list_r_2 (ms : list (M A)) (m : M A) :
    Forall ( m) ms  m   ms.
  Proof. by rewrite finmap_disjoint_union_list_r. Qed.

  (** ** Properties of the conversion from lists to maps *)
  Lemma finmap_disjoint_of_list_l (m : M A) ixs :
    finmap_of_list ixs  m  Forall (λ ix, m !! fst ix = None) ixs.
  Proof.
    split.
    * induction ixs; simpl; rewrite ?finmap_disjoint_insert_l in *; intuition.
    * induction 1; simpl.
      + apply finmap_disjoint_empty_l.
      + rewrite finmap_disjoint_insert_l. auto.
  Qed.
  Lemma finmap_disjoint_of_list_r (m : M A) ixs :
    m  finmap_of_list ixs  Forall (λ ix, m !! fst ix = None) ixs.
  Proof. by rewrite (symmetry_iff ()), finmap_disjoint_of_list_l. Qed.

  Lemma finmap_disjoint_of_list_zip_l (m : M A) is xs :
    same_length is xs 
    finmap_of_list (zip is xs)  m  Forall (λ i, m !! i = None) is.
  Proof.
    intro. rewrite finmap_disjoint_of_list_l.
    rewrite <-(zip_fst is xs) at 2 by done.
    by rewrite Forall_fmap.
  Qed.
  Lemma finmap_disjoint_of_list_zip_r (m : M A) is xs :
    same_length is xs 
    m  finmap_of_list (zip is xs)  Forall (λ i, m !! i = None) is.
  Proof.
    intro. by rewrite (symmetry_iff ()), finmap_disjoint_of_list_zip_l.
  Qed.
  Lemma finmap_disjoint_of_list_zip_l_2 (m : M A) is xs :
    same_length is xs 
    Forall (λ i, m !! i = None) is 
    finmap_of_list (zip is xs)  m.
  Proof. intro. by rewrite finmap_disjoint_of_list_zip_l. Qed.
  Lemma finmap_disjoint_of_list_zip_r_2 (m : M A) is xs :
    same_length is xs 
    Forall (λ i, m !! i = None) is 
    m  finmap_of_list (zip is xs).
  Proof. intro. by rewrite finmap_disjoint_of_list_zip_r. Qed.

  (** ** Properties with respect to vectors *)
  Lemma union_delete_vec {n} (ms : vec (M A) n) (i : fin n) :
    list_disjoint ms 
    ms !!! i   delete (fin_to_nat i) (vec_to_list ms) =  ms.
  Proof.
    induction ms as [|m ? ms]; inversion_clear 1;
      inv_fin i; simpl; [done | intros i].
    rewrite (finmap_union_comm m), (associative_eq _ _), IHms.
    * by apply finmap_union_comm, finmap_disjoint_union_list_l.
    * done.
    * by apply finmap_disjoint_union_list_r, Forall_delete.
  Qed.

  Lemma union_insert_vec {n} (ms : vec (M A) n) (i : fin n) m :
    m   delete (fin_to_nat i) (vec_to_list ms) 
     vinsert i m ms = m   delete (fin_to_nat i) (vec_to_list ms).
  Proof.
    induction ms as [|m' ? ms IH];
      inv_fin i; simpl; [done | intros i Hdisjoint].
    rewrite finmap_disjoint_union_r in Hdisjoint.
    rewrite IH, !(associative_eq ()), (finmap_union_comm m); intuition.
  Qed.

  Lemma finmap_list_disjoint_delete_vec {n} (ms : vec (M A) n) (i : fin n) :
    list_disjoint ms 
    Forall ( ms !!! i) (delete (fin_to_nat i) (vec_to_list ms)).
  Proof.
    induction ms; inversion_clear 1; inv_fin i; simpl.
    * done.
    * constructor. symmetry. by apply Forall_vlookup. auto.
  Qed.

  Lemma finmap_list_disjoint_insert_vec {n} (ms : vec (M A) n) (i : fin n) m :
    list_disjoint ms 
    Forall ( m) (delete (fin_to_nat i) (vec_to_list ms)) 
    list_disjoint (vinsert i m ms).
  Proof.
    induction ms as [|m' ? ms]; inversion_clear 1; inv_fin i; simpl.
    { constructor; auto. }
    intros i. inversion_clear 1. constructor; [| by auto].
    apply Forall_vlookup_2. intros j.
    destruct (decide (i = j)); subst;
      rewrite ?vlookup_insert, ?vlookup_insert_ne by done.
    * done.
    * by apply Forall_vlookup.
  Qed.

  (** ** Properties of the difference operation *)
  Lemma finmap_difference_Some (m1 m2 : M A) i x :
    (m1  m2) !! i = Some x  m1 !! i = Some x  m2 !! i = None.
  Proof.
    unfold difference, finmap_difference,
      difference_with, finmap_difference_with.
    rewrite (merge_spec _).
    destruct (m1 !! i), (m2 !! i); compute; intuition congruence.
  Qed.

  Lemma finmap_disjoint_difference_l (m1 m2 m3 : M A) :
    m2  m3  m1  m3  m2.
  Proof.
    intros E i. specialize (E i).
    unfold difference, finmap_difference,
      difference_with, finmap_difference_with.
    rewrite (merge_spec _).
    destruct (m1 !! i), (m2 !! i), (m3 !! i); compute;
      try intuition congruence.
    ediscriminate E; eauto.
  Qed.
  Lemma finmap_disjoint_difference_r (m1 m2 m3 : M A) :
    m2  m3  m2  m1  m3.
  Proof. intros. symmetry. by apply finmap_disjoint_difference_l. Qed.

  Lemma finmap_union_difference (m1 m2 : M A) :
    m1  m2  m2 = m1  m2  m1.
  Proof.
    intro Hm1m2. apply finmap_eq. intros i.
    apply option_eq. intros v. specialize (Hm1m2 i).
    unfold difference, finmap_difference,
      difference_with, finmap_difference_with.
    rewrite lookup_union_Some_raw, (merge_spec _).
    destruct (m1 !! i) as [v'|], (m2 !! i);
      try specialize (Hm1m2 v'); compute; intuition congruence.
  Qed.
End finmap_more.

Hint Extern 80 ((_  _) !! _ = Some _) =>
  apply lookup_union_Some_l : simpl_map.
Hint Extern 81 ((_  _) !! _ = Some _) =>
  apply lookup_union_Some_r : simpl_map.
Hint Extern 80 ({[ _ ]} !! _ = Some _) =>
  apply lookup_singleton : simpl_map.
Hint Extern 80 (<[_:=_]> _ !! _ = Some _) =>
  apply lookup_insert : simpl_map.

(** * Tactic to decompose disjoint assumptions *)
(** The tactic [decompose_map_disjoint] simplifies occurences of [disjoint]
in the conclusion and hypotheses that involve the union, insert, or singleton
operation. *)
Ltac decompose_map_disjoint := repeat
  match goal with
  | H : _  _  _ |- _ =>
    apply finmap_disjoint_union_l in H; destruct H
  | H : _  _  _ |- _ =>
    apply finmap_disjoint_union_r in H; destruct H
  | H : {[ _ ]}  _ |- _ => apply finmap_disjoint_singleton_l in H
  | H : _  {[ _ ]} |- _ =>  apply finmap_disjoint_singleton_r in H
  | H : <[_:=_]>_  _ |- _ =>
    apply finmap_disjoint_insert_l in H; destruct H
  | H : _  <[_:=_]>_ |- _ =>
    apply finmap_disjoint_insert_r in H; destruct H
  | H :  _  _ |- _ => apply finmap_disjoint_union_list_l in H
  | H : _   _ |- _ => apply finmap_disjoint_union_list_r in H
  | H :  ⊥_ |- _ => clear H
  | H : _   |- _ => clear H
  | H : list_disjoint [] |- _ => clear H
  | H : list_disjoint [_] |- _ => clear H
  | H : list_disjoint (_ :: _) |- _ =>
    apply list_disjoint_cons_inv in H; destruct H
  | H : Forall ( _) _ |- _ => rewrite Forall_vlookup in H
  | H : Forall ( _) [] |- _ => clear H
  | H : Forall ( _) (_ :: _) |- _ =>
    rewrite Forall_cons in H; destruct H
  | H : Forall ( _) (_ :: _) |- _ =>
    rewrite Forall_app in H; destruct H
1297
  end.