base.v 28.8 KB
Newer Older
1 2 3 4 5 6
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11 12 13 14
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

15 16
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
17 18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.
19
Arguments flip _ _ _ _ _ _/.
20

21 22 23 24
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
25 26
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

31 32
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
33 34 35
Delimit Scope C_scope with C.
Global Open Scope C_scope.

36
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
37 38 39 40 41 42 43 44 45
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

46 47 48 49
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

50
Notation "t $ r" := (t r)
51
  (at level 65, right associativity, only parsing) : C_scope.
52 53 54
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
55 56 57 58
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
59

60 61 62 63 64 65 66 67 68 69 70 71
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

72 73
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
74 75 76
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

77 78 79 80
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82
Class PropHolds (P : Prop) := prop_holds: P.

83 84
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
85
Proof. repeat intro; trivial. Qed.
86 87 88

Ltac solve_propholds :=
  match goal with
89 90
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
91 92 93 94 95 96 97
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
98 99 100
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with
  | populate x, populate y => populate (x,y)
  end.
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
  match iA with
  | populate x => populate (inl x)
  end.
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
  match iB with
  | populate y => populate (inl y)
  end.
Instance option_inhabited {A} : Inhabited (option A) := populate None.

123 124 125
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128 129 130 131 132 133 134 135
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

136 137 138 139 140 141 142 143
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
144
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
145 146
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
147

148
(** ** Operations on collections *)
149
(** We define operational type classes for the traditional operations and
150
relations on collections: the empty collection [∅], the union [(∪)],
151 152
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
153 154 155 156
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
157
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
158 159 160 161 162
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

163 164 165 166 167
Definition union_list `{Empty A}
  `{Union A} : list A  A := fold_right () .
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
168
Class Intersection A := intersection: A  A  A.
169
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
170 171 172 173 174 175
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
176
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
177 178 179 180 181
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

182 183 184 185 186 187
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
188
Class SubsetEq A := subseteq: A  A  Prop.
189
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
190 191 192 193 194 195 196 197 198
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

199 200 201 202 203 204 205 206 207 208 209 210
Hint Extern 0 (_  _) => reflexivity.

Class Subset A := subset: A  A  Prop.
Instance: Params (@subset) 2.
Infix "⊂" := subset (at level 70) : C_scope.
Notation "(⊂)" := subset (only parsing) : C_scope.
Notation "( X ⊂ )" := (subset X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, subset Y X) (only parsing) : C_scope.
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
211 212

Class ElemOf A B := elem_of: A  B  Prop.
213
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
214 215 216 217 218 219 220 221 222
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

223 224 225 226 227 228 229
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
Notation "( X ⊥)" := (disjoint X) (only parsing) : C_scope.
Notation "(⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
Inductive list_disjoint `{Disjoint A} : list A  Prop :=
  | disjoint_nil :
     list_disjoint []
  | disjoint_cons X Xs :
     Forall ( X) Xs 
     list_disjoint Xs 
     list_disjoint (X :: Xs).
Lemma list_disjoint_cons_inv `{Disjoint A} X Xs :
  list_disjoint (X :: Xs) 
  Forall ( X) Xs  list_disjoint Xs.
Proof. inversion_clear 1; auto. Qed.

Instance generic_disjoint `{ElemOf A B} : Disjoint B | 100 :=
  λ X Y,  x, x  X  x  Y.

Class Filter A B :=
  filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
(* Arguments filter {_ _ _} _ {_} !_ / : simpl nomatch. *)

(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)

(* We use these type classes merely for convenient overloading of notations and
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : Type  Type) {A B} (f : A  M B) := mbind: M A  M B.
Notation MBind M := ( {A B} (f : A  M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
Arguments mbind {_ _ _} _ {_} !_ / : simpl nomatch.

Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
Arguments mjoin {_ _ _} !_ / : simpl nomatch.

Class FMapD (M : Type  Type) {A B} (f : A  B) := fmap: M A  M B.
Notation FMap M := ( {A B} (f : A  B), FMapD M f)%type.
Instance: Params (@fmap) 6.
Arguments fmap {_ _ _} _ {_} !_ / : simpl nomatch.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.
Infix "<$>" := fmap (at level 65, right associativity) : C_scope.

Class MGuard (M : Type  Type) :=
  mguard:  P {dec : Decision P} {A}, M A  M A.
Notation "'guard' P ; o" := (mguard P o)
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.

300
(** ** Operations on maps *)
301 302
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
303
The function lookup [m !! k] should yield the element at key [k] in [m]. *)
304 305
Class Lookup (K A M : Type) :=
  lookup: K  M  option A.
306 307 308 309 310 311
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
312
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
313 314 315

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
316 317
Class Insert (K A M : Type) :=
  insert: K  A  M  M.
318 319 320
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
321
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
322

323 324 325
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
326 327 328 329
Class Delete (K M : Type) :=
  delete: K  M  M.
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
330 331

(** The function [alter f k m] should update the value at key [k] using the
332
function [f], which is called with the original value. *)
333 334 335 336 337
Class AlterD (K A M : Type) (f : A  A) :=
  alter: K  M  M.
Notation Alter K A M := ( (f : A  A), AlterD K A M f)%type.
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
338 339

(** The function [alter f k m] should update the value at key [k] using the
340 341 342
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
343 344
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
345
Instance: Params (@partial_alter) 4.
346
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
347 348 349

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
350 351 352 353
Class Dom (K M : Type) :=
  dom:  C `{Empty C} `{Union C} `{Singleton K C}, M  C.
Instance: Params (@dom) 7.
Arguments dom _ _ _ _ _ _ _ !_ / : simpl nomatch.
354 355 356 357

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)]
provided that [k] is a member of either [m1] or [m2].*)
358 359
Class Merge (A M : Type) :=
  merge: (option A  option A  option A)  M  M  M.
360
Instance: Params (@merge) 3.
361
Arguments merge _ _ _ _ !_ !_ / : simpl nomatch.
362 363

(** We lift the insert and delete operation to lists of elements. *)
364
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
365 366
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
367
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
368
  fold_right delete m l.
369 370 371 372 373 374 375 376 377 378 379 380
Instance: Params (@delete_list) 3.

Definition insert_consecutive `{Insert nat A M}
    (i : nat) (l : list A) (m : M) : M :=
  fold_right (λ x f i, <[i:=x]>(f (S i))) (λ _, m) l i.
Instance: Params (@insert_consecutive) 3.

(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
381 382
Instance: Params (@union_with) 3.

383 384 385
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
386
Instance: Params (@intersection_with) 3.
387 388
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
389
Instance: Params (@difference_with) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
390

391 392 393 394
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

395 396 397 398
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
399 400 401 402 403 404 405 406 407 408 409 410
Class Injective {A B} R S (f : A  B) :=
  injective:  x y : A, S (f x) (f y)  R x y.
Class Idempotent {A} R (f : A  A  A) :=
  idempotent:  x, R (f x x) x.
Class Commutative {A B} R (f : B  B  A) :=
  commutative:  x y, R (f x y) (f y x).
Class LeftId {A} R (i : A) (f : A  A  A) :=
  left_id:  x, R (f i x) x.
Class RightId {A} R (i : A) (f : A  A  A) :=
  right_id:  x, R (f x i) x.
Class Associative {A} R (f : A  A  A) :=
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
411 412 413 414 415 416
Class LeftAbsorb {A} R (i : A) (f : A  A  A) :=
  left_absorb:  x, R (f i x) i.
Class RightAbsorb {A} R (i : A) (f : A  A  A) :=
  right_absorb:  x, R (f x i) i.
Class AntiSymmetric {A} (R : A  A  Prop) :=
  anti_symmetric:  x y, R x y  R y x  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
417 418 419 420 421 422 423

Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
Arguments anti_symmetric {_} _ {_} _ _ _ _.

Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: LeftId () True ().
Proof. red. intuition. Qed.
Instance: RightId () True ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red. intuition. Qed.
Instance: LeftId () False ().
Proof. red. intuition. Qed.
Instance: RightId () False ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red. intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red. intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red. intuition. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
462

463 464 465
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
466 467
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
468
Proof. auto. Qed.
469 470
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
471
Proof. auto. Qed.
472 473
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
474
Proof. auto. Qed.
475 476
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
477
Proof. auto. Qed.
478 479
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
480
Proof. auto. Qed.
481 482 483 484 485 486
Lemma left_absorb_eq {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
  f i x = i.
Proof. auto. Qed.
Lemma right_absorb_eq {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
  f x i = i.
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
487

488 489
(** ** Axiomatization of ordered structures *)
(** A pre-order equiped with a smallest element. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
490 491 492 493
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} := {
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.
494 495 496 497
Class PartialOrder A `{SubsetEq A} := {
  po_preorder :>> PreOrder ();
  po_antisym :> AntiSymmetric ()
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
498

499 500 501 502
(** We do not include equality in the following interfaces so as to avoid the
need for proofs that the  relations and operations respect setoid equality.
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
503
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} := {
504
  bjsl_preorder :>> BoundedPreOrder A;
Robbert Krebbers's avatar
Robbert Krebbers committed
505 506 507 508 509 510 511 512 513 514
  subseteq_union_l x y : x  x  y;
  subseteq_union_r x y : y  x  y;
  union_least x y z : x  z  y  z  x  y  z
}.
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} := {
  msl_preorder :>> BoundedPreOrder A;
  subseteq_intersection_l x y : x  y  x;
  subseteq_intersection_r x y : x  y  y;
  intersection_greatest x y z : z  x  z  y  z  x  y
}.
515 516 517 518 519
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
    `{Union A} `{Intersection A} := {
  lbl_bjsl :>> BoundedJoinSemiLattice A;
  lbl_msl :>> MeetSemiLattice A
}.
520
(** ** Axiomatization of collections *)
521 522
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
523
Instance: Params (@map) 3.
524 525
Class SimpleCollection A C `{ElemOf A C}
  `{Empty C} `{Singleton A C} `{Union C} := {
526
  not_elem_of_empty (x : A) : x  ;
527
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
528 529 530 531 532
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class Collection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C} `{IntersectionWith A C} := {
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
533 534
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y;
535 536
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x
Robbert Krebbers's avatar
Robbert Krebbers committed
537 538
}.

539 540 541
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
542
Class Elements A C := elements: C  list A.
543
Instance: Params (@elements) 3.
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C} `{IntersectionWith A C}
    `{Filter A C} `{Elements A C} `{ x y : A, Decision (x = y)} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
560
  fin_collection :>> Collection A C;
561 562 563
  elem_of_filter X P `{ x, Decision (P x)} x :
    x  filter P X  P x  x  X;
  elements_spec X x : x  X  x  elements X;
Robbert Krebbers's avatar
Robbert Krebbers committed
564
  elements_nodup X : NoDup (elements X)
565 566
}.
Class Size C := size: C  nat.
567
Arguments size {_ _} !_ / : simpl nomatch.
568
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class CollectionMonad M `{ A, ElemOf A (M A)}
    `{ A, Empty (M A)} `{ A, Singleton A (M A)} `{ A, Union (M A)}
    `{!MBind M} `{!MRet M} `{!FMap M} `{!MJoin M} := {
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
  elem_of_ret {A} (x y : A) :
    x  mret y  x = y;
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
  elem_of_join {A} (X : M (M A)) (x : A) :
    x  mjoin X   Y, x  Y  Y  X
}.

592 593 594
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
595
Class Fresh A C := fresh: C  A.
596
Instance: Params (@fresh) 3.
597 598 599
Class FreshSpec A C `{ElemOf A C}
    `{Empty C} `{Singleton A C} `{Union C} `{Fresh A C} := {
  fresh_collection_simple :>> SimpleCollection A C;
600
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
601 602 603
  is_fresh (X : C) : fresh X  X
}.

604 605 606
(** * Miscellaneous *)
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
607
Proof. injection 1; trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
608

609 610 611 612
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

613 614 615
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
616 617 618 619 620 621 622 623 624 625
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

626
(** ** Products *)
627 628 629 630
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
Arguments fst_map {_ _ _} _ !_ /.
Arguments snd_map {_ _ _} _ !_ /.

Instance:  {A A' B} (f : A  A'),
  Injective (=) (=) f  Injective (=) (=) (@fst_map A A' B f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * apply (injective f). congruence.
  * congruence.
Qed.
Instance:  {A B B'} (f : B  B'),
  Injective (=) (=) f  Injective (=) (=) (@snd_map A B B' f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * congruence.
  * apply (injective f). congruence.
Qed.

649 650
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
651 652 653

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
654 655
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
656
  Proof. firstorder eauto. Qed.
657 658
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
659
  Proof. firstorder eauto. Qed.
660 661
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
662
  Proof. firstorder eauto. Qed.
663 664
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
665 666 667 668 669 670 671 672 673
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

674
(** ** Other *)
675 676
Definition lift_relation {A B} (R : relation A)
  (f : B  A) : relation B := λ x y, R (f x) (f y).
Robbert Krebbers's avatar
Robbert Krebbers committed
677 678
Definition lift_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (lift_relation R f).
679
Proof. unfold lift_relation. firstorder auto. Qed.
680 681
Hint Extern 0 (Equivalence (lift_relation _ _)) =>
  eapply @lift_relation_equivalence : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
682 683

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
684
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
685
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
686
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
687
Instance:  A, Associative (=) (λ x _ : A, x).
688
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
689
Instance:  A, Associative (=) (λ _ x : A, x).
690
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
691
Instance:  A, Idempotent (=) (λ x _ : A, x).
692
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
693
Instance:  A, Idempotent (=) (λ _ x : A, x).
694
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
695

696 697
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
698
Proof. red. trivial. Qed.
699 700
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
701
Proof. red. trivial. Qed.
702 703
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
704
Proof. red. trivial. Qed.