base.v 32.6 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11 12 13 14
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

15 16
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
17 18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.
19
Arguments flip _ _ _ _ _ _/.
20

21 22 23 24
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
25 26
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

31 32
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
33 34 35
Delimit Scope C_scope with C.
Global Open Scope C_scope.

36
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
37 38 39 40 41 42 43 44 45
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

46 47 48 49
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

50
Notation "t $ r" := (t r)
51
  (at level 65, right associativity, only parsing) : C_scope.
52 53 54
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
55 56 57 58
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
59

60 61 62 63 64 65 66 67 68 69 70 71
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

72 73
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
74 75 76
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

77 78 79 80
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82
Class PropHolds (P : Prop) := prop_holds: P.

83 84
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
85
Proof. repeat intro; trivial. Qed.
86 87 88

Ltac solve_propholds :=
  match goal with
89 90
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
91 92 93 94 95 96 97
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
98 99 100
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with
  | populate x, populate y => populate (x,y)
  end.
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
  match iA with
  | populate x => populate (inl x)
  end.
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
  match iB with
  | populate y => populate (inl y)
  end.
Instance option_inhabited {A} : Inhabited (option A) := populate None.

123 124 125 126 127 128
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

129 130 131
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
132 133 134 135 136 137 138 139 140 141
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.

Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv (A:=A))
  end.

163 164 165 166 167 168 169 170
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
171
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
172 173
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
174

175
(** ** Operations on collections *)
176
(** We define operational type classes for the traditional operations and
177
relations on collections: the empty collection [∅], the union [(∪)],
178 179
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
180 181 182 183
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
184
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
185 186 187 188 189
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

190 191 192 193 194
Definition union_list `{Empty A}
  `{Union A} : list A  A := fold_right () .
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
195
Class Intersection A := intersection: A  A  A.
196
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
197 198 199 200 201 202
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
203
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
204 205 206 207 208
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

209 210 211 212 213 214
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
215
Class SubsetEq A := subseteq: A  A  Prop.
216
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
217 218 219 220 221 222 223 224 225
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

226 227 228 229 230 231 232 233 234 235 236 237
Hint Extern 0 (_  _) => reflexivity.

Class Subset A := subset: A  A  Prop.
Instance: Params (@subset) 2.
Infix "⊂" := subset (at level 70) : C_scope.
Notation "(⊂)" := subset (only parsing) : C_scope.
Notation "( X ⊂ )" := (subset X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, subset Y X) (only parsing) : C_scope.
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
238 239

Class ElemOf A B := elem_of: A  B  Prop.
240
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
241 242 243 244 245 246 247 248 249
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
250 251 252 253 254 255 256
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
Notation "( X ⊥)" := (disjoint X) (only parsing) : C_scope.
Notation "(⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

257 258
Inductive list_disjoint `{Empty A} `{Union A}
      `{Disjoint A} : list A  Prop :=
259 260 261
  | disjoint_nil :
     list_disjoint []
  | disjoint_cons X Xs :
262
     X   Xs 
263 264
     list_disjoint Xs 
     list_disjoint (X :: Xs).
265
Lemma list_disjoint_cons_inv `{Empty A} `{Union A} `{Disjoint A} X Xs :
266
  list_disjoint (X :: Xs) 
267
  X   Xs  list_disjoint Xs.
268 269 270 271
Proof. inversion_clear 1; auto. Qed.

Class Filter A B :=
  filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
272

273 274
(* Arguments filter {_ _ _} _ {_} !_ / : simpl nomatch. *)

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
(** We define variants of the relations [(≡)] and [(⊆)] that are indexed by
an environment. *)
Class EquivEnv A B := equiv_env : A  relation B.
Notation "X ≡@{ E } Y" := (equiv_env E X Y)
  (at level 70, format "X  ≡@{ E }  Y") : C_scope.
Notation "(≡@{ E } )" := (equiv_env E)
  (E at level 1, only parsing) : C_scope.
Instance: Params (@equiv_env) 4.

Class SubsetEqEnv A B := subseteq_env : A  relation B.
Notation "X ⊆@{ E } Y" := (subseteq_env E X Y)
  (at level 70, format "X  ⊆@{ E }  Y") : C_scope.
Notation "(⊆@{ E } )" := (subseteq_env E)
  (E at level 1, only parsing) : C_scope.
Instance: Params (@subseteq_env) 4.

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)

307
(** We use these type classes merely for convenient overloading of notations and
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : Type  Type) {A B} (f : A  M B) := mbind: M A  M B.
Notation MBind M := ( {A B} (f : A  M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
Arguments mbind {_ _ _} _ {_} !_ / : simpl nomatch.

Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
Arguments mjoin {_ _ _} !_ / : simpl nomatch.

Class FMapD (M : Type  Type) {A B} (f : A  B) := fmap: M A  M B.
Notation FMap M := ( {A B} (f : A  B), FMapD M f)%type.
Instance: Params (@fmap) 6.
Arguments fmap {_ _ _} _ {_} !_ / : simpl nomatch.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.
335
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
336 337 338 339 340

Class MGuard (M : Type  Type) :=
  mguard:  P {dec : Decision P} {A}, M A  M A.
Notation "'guard' P ; o" := (mguard P o)
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.
341
Arguments mguard _ _ _ !_ _ !_ / : simpl nomatch.
342

343
(** ** Operations on maps *)
344 345
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
346
The function look up [m !! k] should yield the element at key [k] in [m]. *)
347 348
Class Lookup (K A M : Type) :=
  lookup: K  M  option A.
349 350 351 352 353 354
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
355
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
356 357 358

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
359 360
Class Insert (K A M : Type) :=
  insert: K  A  M  M.
361 362 363
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
364
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
365

366 367 368
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
369 370 371 372
Class Delete (K M : Type) :=
  delete: K  M  M.
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
373 374

(** The function [alter f k m] should update the value at key [k] using the
375
function [f], which is called with the original value. *)
376 377 378 379 380
Class AlterD (K A M : Type) (f : A  A) :=
  alter: K  M  M.
Notation Alter K A M := ( (f : A  A), AlterD K A M f)%type.
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
381 382

(** The function [alter f k m] should update the value at key [k] using the
383 384 385
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
386 387
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
388
Instance: Params (@partial_alter) 4.
389
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
390 391 392

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
393 394 395
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
396 397

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
398 399 400 401 402
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
403 404

(** We lift the insert and delete operation to lists of elements. *)
405
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
406 407
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
408
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
409
  fold_right delete m l.
410 411 412 413 414 415 416 417 418 419 420 421
Instance: Params (@delete_list) 3.

Definition insert_consecutive `{Insert nat A M}
    (i : nat) (l : list A) (m : M) : M :=
  fold_right (λ x f i, <[i:=x]>(f (S i))) (λ _, m) l i.
Instance: Params (@insert_consecutive) 3.

(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
422
Instance: Params (@union_with) 3.
423
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
424

425 426 427
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
428
Instance: Params (@intersection_with) 3.
429 430
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

431 432
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
433
Instance: Params (@difference_with) 3.
434
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
435

436 437 438 439
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

440 441 442 443
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
444
Class Injective {A B} (R : relation A) S (f : A  B) : Prop :=
445
  injective:  x y : A, S (f x) (f y)  R x y.
446
Class Idempotent {A} (R : relation A) (f : A  A  A) : Prop :=
447
  idempotent:  x, R (f x x) x.
448
Class Commutative {A B} (R : relation A) (f : B  B  A) : Prop :=
449
  commutative:  x y, R (f x y) (f y x).
450
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
451
  left_id:  x, R (f i x) x.
452
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
453
  right_id:  x, R (f x i) x.
454
Class Associative {A} (R : relation A) (f : A  A  A) : Prop :=
455
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
456
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
457
  left_absorb:  x, R (f i x) i.
458
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
459
  right_absorb:  x, R (f x i) i.
460 461 462 463 464
Class LeftDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  left_distr:  x y z, R (f x (g y z)) (g (f x y) (f x z)).
Class RightDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  right_distr:  y z x, R (f (g y z) x) (g (f y x) (f z x)).
Class AntiSymmetric {A} (R : relation A) : Prop :=
465
  anti_symmetric:  x y, R x y  R y x  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
466

467
Arguments irreflexivity {_} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
468 469 470 471 472 473
Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
474 475
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
476 477
Arguments left_distr {_ _} _ _ {_} _ _ _.
Arguments right_distr {_ _} _ _ {_} _ _ _.
478 479
Arguments anti_symmetric {_} _ {_} _ _ _ _.

480 481 482 483
Instance: Commutative () (@eq A).
Proof. red. intuition. Qed.
Instance: Commutative () (λ x y, @eq A y x).
Proof. red. intuition. Qed.
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: LeftId () True ().
Proof. red. intuition. Qed.
Instance: RightId () True ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red. intuition. Qed.
Instance: LeftId () False ().
Proof. red. intuition. Qed.
Instance: RightId () False ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red. intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red. intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red. intuition. Qed.
518 519 520 521 522 523 524 525
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
526

527 528 529
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
530 531
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
532
Proof. auto. Qed.
533 534
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
535
Proof. auto. Qed.
536 537
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
538
Proof. auto. Qed.
539 540
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
541
Proof. auto. Qed.
542 543
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
544
Proof. auto. Qed.
545 546 547 548 549 550
Lemma left_absorb_eq {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
  f i x = i.
Proof. auto. Qed.
Lemma right_absorb_eq {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
  f x i = i.
Proof. auto. Qed.
551 552 553 554 555 556
Lemma left_distr_eq {A} (f g : A  A  A) `{!LeftDistr (=) f g} x y z :
  f x (g y z) = g (f x y) (f x z).
Proof. auto. Qed.
Lemma right_distr_eq {A} (f g : A  A  A) `{!RightDistr (=) f g} y z x :
  f (g y z) x = g (f y x) (f z x).
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
557

558
(** ** Axiomatization of ordered structures *)
559 560
(** A pre-order equipped with a smallest element. *)
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
561 562 563
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.
564
Class PartialOrder A `{SubsetEq A} : Prop := {
565 566 567
  po_preorder :>> PreOrder ();
  po_antisym :> AntiSymmetric ()
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
568

569
(** We do not include equality in the following interfaces so as to avoid the
570
need for proofs that the relations and operations respect setoid equality.
571 572
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
573
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} : Prop := {
574
  bjsl_preorder :>> BoundedPreOrder A;
575 576
  union_subseteq_l x y : x  x  y;
  union_subseteq_r x y : y  x  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
577 578
  union_least x y z : x  z  y  z  x  y  z
}.
579
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
580
  msl_preorder :>> BoundedPreOrder A;
581 582
  intersection_subseteq_l x y : x  y  x;
  intersection_subseteq_r x y : x  y  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
583 584
  intersection_greatest x y z : z  x  z  y  z  x  y
}.
585 586 587 588

(** A join distributive lattice with distributivity stated in the order
theoretic way. We will prove that distributivity of join, and distributivity
as an equality can be derived. *)
589
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
590
    `{Union A} `{Intersection A} : Prop := {
591
  lbl_bjsl :>> BoundedJoinSemiLattice A;
592 593
  lbl_msl :>> MeetSemiLattice A;
  lbl_distr x y z : (x  y)  (x  z)  x  (y  z)
594
}.
595

596
(** ** Axiomatization of collections *)
597 598
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
599
Instance: Params (@map) 3.
600
Class SimpleCollection A C `{ElemOf A C}
601
    `{Empty C} `{Singleton A C} `{Union C} : Prop := {
602
  not_elem_of_empty (x : A) : x  ;
603
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
604 605 606
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class Collection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
607
    `{Union C} `{Intersection C} `{Difference C} : Prop := {
608
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
609
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
610 611 612 613 614 615 616
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class CollectionOps A C
    `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C}
    `{IntersectionWith A C} `{Filter A C} : Prop := {
  collection_ops :>> Collection A C;
617
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
618 619 620
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
  elem_of_filter X P `{ x, Decision (P x)} x :
    x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
621 622
}.

623 624 625
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
626
Class Elements A C := elements: C  list A.
627
Instance: Params (@elements) 3.
628 629 630 631 632 633 634 635 636 637 638 639 640 641

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
642 643
    `{Union C} `{Intersection C} `{Difference C}
    `{Elements A C} `{ x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
644
  fin_collection :>> Collection A C;
645
  elements_spec X x : x  X  x  elements X;
Robbert Krebbers's avatar
Robbert Krebbers committed
646
  elements_nodup X : NoDup (elements X)
647 648
}.
Class Size C := size: C  nat.
649
Arguments size {_ _} !_ / : simpl nomatch.
650
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
651

652 653 654 655 656 657 658 659 660 661
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class CollectionMonad M `{ A, ElemOf A (M A)}
    `{ A, Empty (M A)} `{ A, Singleton A (M A)} `{ A, Union (M A)}
662
    `{!MBind M} `{!MRet M} `{!FMap M} `{!MJoin M} : Prop := {
663 664 665 666 667 668 669 670 671 672 673
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
  elem_of_ret {A} (x y : A) :
    x  mret y  x = y;
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
  elem_of_join {A} (X : M (M A)) (x : A) :
    x  mjoin X   Y, x  Y  Y  X
}.

674 675 676
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
677
Class Fresh A C := fresh: C  A.
678
Instance: Params (@fresh) 3.
679
Class FreshSpec A C `{ElemOf A C}
680
    `{Empty C} `{Singleton A C} `{Union C} `{Fresh A C} : Prop := {
681
  fresh_collection_simple :>> SimpleCollection A C;
682
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
683 684 685
  is_fresh (X : C) : fresh X  X
}.

686
(** * Miscellaneous *)
687 688 689
Class Half A := half: A  A.
Notation "x .½" := (half x) (at level 20, format "x .½") : C_scope.

690 691
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
692
Proof. injection 1; trivial. Qed.
693 694 695
Lemma not_symmetry `{R : relation A} `{!Symmetric R} (x y : A) :
  ¬R x y  ¬R y x.
Proof. intuition. Qed.
696 697 698 699
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

700 701 702
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
703 704 705 706 707 708 709 710 711 712
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

713
(** ** Products *)
714 715 716 717
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
Arguments fst_map {_ _ _} _ !_ /.
Arguments snd_map {_ _ _} _ !_ /.

Instance:  {A A' B} (f : A  A'),
  Injective (=) (=) f  Injective (=) (=) (@fst_map A A' B f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * apply (injective f). congruence.
  * congruence.
Qed.
Instance:  {A B B'} (f : B  B'),
  Injective (=) (=) f  Injective (=) (=) (@snd_map A B B' f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * congruence.
  * apply (injective f). congruence.
Qed.

736 737
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
738 739 740

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
741 742
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
743
  Proof. firstorder eauto. Qed.
744 745
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
746
  Proof. firstorder eauto. Qed.
747 748
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
749
  Proof. firstorder eauto. Qed.
750 751
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
752 753 754 755 756 757 758 759 760
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

761
(** ** Other *)
762
Definition proj_relation {A B} (R : relation A)
763
  (f : B  A) : relation B := λ x y, R (f x) (f y).
764 765 766
Definition proj_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (proj_relation R f).
Proof. unfold proj_relation. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
767 768

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
769
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
770
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
771
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
772
Instance:  A, Associative (=) (λ x _ : A, x).
773
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
774
Instance:  A, Associative (=) (λ _ x : A, x).
775
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
776
Instance:  A, Idempotent (=) (λ x _ : A, x).
777
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
778
Instance:  A, Idempotent (=) (λ _ x : A, x).
779
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
780

781 782
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
783
Proof. red. trivial. Qed.
784 785
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
786
Proof. red. trivial. Qed.
787 788 789 790 791 792
Instance left_absorb_propholds {A} (R : relation A) i f :
  LeftAbsorb R i f   x, PropHolds (R (f i x) i).
Proof. red. trivial. Qed.
Instance right_absorb_propholds {A} (R : relation A) i f :
  RightAbsorb R i f   x, PropHolds (R (f x i) i).
Proof. red. trivial. Qed.
793 794
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
795
Proof. red. trivial. Qed.