strings.v 3.82 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
2
(* This file is distributed under the terms of the BSD license. *)
3 4
From Coq Require Import Ascii.
From Coq Require Export String.
5 6
From stdpp Require Export list.
From stdpp Require Import countable.
7
Set Default Proof Using "Type".
8 9 10 11

(* To avoid randomly ending up with String.length because this module is
imported hereditarily somewhere. *)
Notation length := List.length.
12 13 14 15

(** * Fix scopes *)
Open Scope string_scope.
Open Scope list_scope.
16
Infix "+:+" := String.append (at level 60, right associativity) : stdpp_scope.
17
Arguments String.append : simpl never.
18 19

(** * Decision of equality *)
20
Instance ascii_eq_dec : EqDecision ascii := ascii_dec.
21
Instance string_eq_dec : EqDecision string.
22
Proof. solve_decision. Defined.
23
Instance string_app_inj : Inj (=) (=) (String.append s1).
24
Proof. intros s1 ???. induction s1; simplify_eq/=; f_equal/=; auto. Qed.
25

26 27
Instance string_inhabited : Inhabited string := populate "".

28 29 30 31 32 33 34 35
(* Reverse *)
Fixpoint string_rev_app (s1 s2 : string) : string :=
  match s1 with
  | "" => s2
  | String a s1 => string_rev_app s1 (String a s2)
  end.
Definition string_rev (s : string) : string := string_rev_app s "".

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Definition is_nat (x : ascii) : option nat :=
  match x with
  | "0" => Some 0
  | "1" => Some 1
  | "2" => Some 2
  | "3" => Some 3
  | "4" => Some 4
  | "5" => Some 5
  | "6" => Some 6
  | "7" => Some 7
  | "8" => Some 8
  | "9" => Some 9
  | _ => None
  end%char.

51
(* Break a string up into lists of words, delimited by white space *)
52 53 54 55 56
Definition is_space (x : Ascii.ascii) : bool :=
  match x with
  | "009" | "010" | "011" | "012" | "013" | " " => true | _ => false
  end%char.

57 58 59
Fixpoint words_go (cur : option string) (s : string) : list string :=
  match s with
  | "" => option_list (string_rev <$> cur)
60 61
  | String a s =>
     if is_space a then option_list (string_rev <$> cur) ++ words_go None s
62
     else words_go (Some (from_option (String a) (String a "") cur)) s
63 64 65 66 67 68 69 70 71
  end.
Definition words : string  list string := words_go None.

Ltac words s :=
  match type of s with
  | list string => s
  | string => eval vm_compute in (words s)
  end.

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
(** * Encoding and decoding *)
(** In order to reuse or existing implementation of radix-2 search trees over
positive binary naturals [positive], we define an injection [string_to_pos]
from [string] into [positive]. *)
Fixpoint digits_to_pos (βs : list bool) : positive :=
  match βs with
  | [] => xH
  | false :: βs => (digits_to_pos βs)~0
  | true :: βs => (digits_to_pos βs)~1
  end%positive.
Definition ascii_to_digits (a : Ascii.ascii) : list bool :=
  match a with
  | Ascii.Ascii β1 β2 β3 β4 β5 β6 β7 β8 => [β1;β2;β3;β4;β5;β6;β7;β8]
  end.
Fixpoint string_to_pos (s : string) : positive :=
  match s with
  | EmptyString => xH
  | String a s => string_to_pos s ++ digits_to_pos (ascii_to_digits a)
  end%positive.
Fixpoint digits_of_pos (p : positive) : list bool :=
  match p with
  | xH => []
  | p~0 => false :: digits_of_pos p
  | p~1 => true :: digits_of_pos p
  end%positive.
Fixpoint ascii_of_digits (βs : list bool) : ascii :=
  match βs with
  | [] => zero
  | β :: βs => Ascii.shift β (ascii_of_digits βs)
  end.
Fixpoint string_of_digits (βs : list bool) : string :=
  match βs with
  | β1 :: β2 :: β3 :: β4 :: β5 :: β6 :: β7 :: β8 :: βs =>
     String (ascii_of_digits [β1;β2;β3;β4;β5;β6;β7;β8]) (string_of_digits βs)
  | _ => EmptyString
  end.
Definition string_of_pos (p : positive) : string :=
  string_of_digits (digits_of_pos p).
Lemma string_of_to_pos s : string_of_pos (string_to_pos s) = s.
Proof.
112
  unfold string_of_pos. by induction s as [|[[][][][][][][][]]]; f_equal/=.
113 114 115 116 117
Qed.
Program Instance string_countable : Countable string := {|
  encode := string_to_pos; decode p := Some (string_of_pos p)
|}.
Solve Obligations with naive_solver eauto using string_of_to_pos with f_equal.