option.v 19 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on the option
data type that are not in the Coq standard library. *)
5
From stdpp Require Export tactics.
6
Set Default Proof Using "Type".
7

8 9 10 11
Inductive option_reflect {A} (P : A  Prop) (Q : Prop) : option A  Type :=
  | ReflectSome x : P x  option_reflect P Q (Some x)
  | ReflectNone : Q  option_reflect P Q None.

12 13
(** * General definitions and theorems *)
(** Basic properties about equality. *)
14
Lemma None_ne_Some {A} (x : A) : None  Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
15
Proof. congruence. Qed.
16
Lemma Some_ne_None {A} (x : A) : Some x  None.
Robbert Krebbers's avatar
Robbert Krebbers committed
17
Proof. congruence. Qed.
18
Lemma eq_None_ne_Some {A} (mx : option A) x : mx = None  mx  Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
19
Proof. congruence. Qed.
20
Instance Some_inj {A} : Inj (=) (=) (@Some A).
Robbert Krebbers's avatar
Robbert Krebbers committed
21 22
Proof. congruence. Qed.

23 24
(** The [from_option] is the eliminator for option. *)
Definition from_option {A B} (f : A  B) (y : B) (mx : option A) : B :=
25
  match mx with None => y | Some x => f x end.
26
Instance: Params (@from_option) 3 := {}.
27
Arguments from_option {_ _} _ _ !_ / : assert.
Robbert Krebbers's avatar
Robbert Krebbers committed
28

Ralf Jung's avatar
Ralf Jung committed
29
(** The eliminator with the identity function. *)
30 31
Notation default := (from_option id).

32 33
(** An alternative, but equivalent, definition of equality on the option
data type. This theorem is useful to prove that two options are the same. *)
34 35 36
Lemma option_eq {A} (mx my: option A): mx = my   x, mx = Some x  my = Some x.
Proof. split; [by intros; by subst |]. destruct mx, my; naive_solver. Qed.
Lemma option_eq_1 {A} (mx my: option A) x : mx = my  mx = Some x  my = Some x.
37
Proof. congruence. Qed.
38 39
Lemma option_eq_1_alt {A} (mx my : option A) x :
  mx = my  my = Some x  mx = Some x.
40
Proof. congruence. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
41

42
Definition is_Some {A} (mx : option A) :=  x, mx = Some x.
43
Instance: Params (@is_Some) 1 := {}.
44

45 46 47 48
Lemma is_Some_alt {A} (mx : option A) :
  is_Some mx  match mx with Some _ => True | None => False end.
Proof. unfold is_Some. destruct mx; naive_solver. Qed.

49
Lemma mk_is_Some {A} (mx : option A) x : mx = Some x  is_Some mx.
50
Proof. intros; red; subst; eauto. Qed.
51
Hint Resolve mk_is_Some : core.
52 53
Lemma is_Some_None {A} : ¬is_Some (@None A).
Proof. by destruct 1. Qed.
54
Hint Resolve is_Some_None : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
55

56 57 58 59 60
Lemma eq_None_not_Some {A} (mx : option A) : mx = None  ¬is_Some mx.
Proof. rewrite is_Some_alt; destruct mx; naive_solver. Qed.
Lemma not_eq_None_Some {A} (mx : option A) : mx  None  is_Some mx.
Proof. rewrite is_Some_alt; destruct mx; naive_solver. Qed.

61
Instance is_Some_pi {A} (mx : option A) : ProofIrrel (is_Some mx).
62
Proof.
63 64
  set (P (mx : option A) := match mx with Some _ => True | _ => False end).
  set (f mx := match mx return P mx  is_Some mx with
65
    Some _ => λ _, ex_intro _ _ eq_refl | None => False_rect _ end).
66
  set (g mx (H : is_Some mx) :=
67
    match H return P mx with ex_intro _ _ p => eq_rect _ _ I _ (eq_sym p) end).
68 69
  assert ( mx H, f mx (g mx H) = H) as f_g by (by intros ? [??]; subst).
  intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct mx, p1.
70
Qed.
71

72 73
Instance is_Some_dec {A} (mx : option A) : Decision (is_Some mx) :=
  match mx with
74 75
  | Some x => left (ex_intro _ x eq_refl)
  | None => right is_Some_None
76
  end.
77

78 79
Definition is_Some_proj {A} {mx : option A} : is_Some mx  A :=
  match mx with Some x => λ _, x | None => False_rect _  is_Some_None end.
80

81 82 83
Definition Some_dec {A} (mx : option A) : { x | mx = Some x } + { mx = None } :=
  match mx return { x | mx = Some x } + { mx = None } with
  | Some x => inleft (x  eq_refl _)
84 85
  | None => inright eq_refl
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
86

Robbert Krebbers's avatar
Robbert Krebbers committed
87
(** Lifting a relation point-wise to option *)
88 89 90
Inductive option_Forall2 {A B} (R: A  B  Prop) : option A  option B  Prop :=
  | Some_Forall2 x y : R x y  option_Forall2 R (Some x) (Some y)
  | None_Forall2 : option_Forall2 R None None.
Robbert Krebbers's avatar
Robbert Krebbers committed
91 92 93 94 95 96 97 98 99
Definition option_relation {A B} (R: A  B  Prop) (P: A  Prop) (Q: B  Prop)
    (mx : option A) (my : option B) : Prop :=
  match mx, my with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.

100 101 102 103 104 105 106 107 108 109 110 111 112
Section Forall2.
  Context {A} (R : relation A).

  Global Instance option_Forall2_refl : Reflexive R  Reflexive (option_Forall2 R).
  Proof. intros ? [?|]; by constructor. Qed.
  Global Instance option_Forall2_sym : Symmetric R  Symmetric (option_Forall2 R).
  Proof. destruct 2; by constructor. Qed.
  Global Instance option_Forall2_trans : Transitive R  Transitive (option_Forall2 R).
  Proof. destruct 2; inversion_clear 1; constructor; etrans; eauto. Qed.
  Global Instance option_Forall2_equiv : Equivalence R  Equivalence (option_Forall2 R).
  Proof. destruct 1; split; apply _. Qed.
End Forall2.

Robbert Krebbers's avatar
Robbert Krebbers committed
113
(** Setoids *)
114 115
Instance option_equiv `{Equiv A} : Equiv (option A) := option_Forall2 ().

Robbert Krebbers's avatar
Robbert Krebbers committed
116
Section setoids.
117
  Context `{Equiv A}.
118
  Implicit Types mx my : option A.
119 120

  Lemma equiv_option_Forall2 mx my : mx  my  option_Forall2 () mx my.
121
  Proof. done. Qed.
122

123
  Global Instance option_equivalence :
124
    Equivalence (@{A})  Equivalence (@{option A}).
125
  Proof. apply _. Qed.
126
  Global Instance Some_proper : Proper (() ==> (@{option A})) Some.
127
  Proof. by constructor. Qed.
128
  Global Instance Some_equiv_inj : Inj () (@{option A}) Some.
129
  Proof. by inversion_clear 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
  Global Instance option_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (option A).
131
  Proof. intros x y; destruct 1; f_equal; by apply leibniz_equiv. Qed.
132

133
  Lemma equiv_None mx : mx  None  mx = None.
134
  Proof. split; [by inversion_clear 1|intros ->; constructor]. Qed.
135
  Lemma equiv_Some_inv_l mx my x :
136
    mx  my  mx = Some x   y, my = Some y  x  y.
137
  Proof. destruct 1; naive_solver. Qed.
138 139
  Lemma equiv_Some_inv_r mx my y :
    mx  my  my = Some y   x, mx = Some x  x  y.
140
  Proof. destruct 1; naive_solver. Qed.
141
  Lemma equiv_Some_inv_l' my x : Some x  my   x', Some x' = my  x  x'.
142
  Proof. intros ?%(equiv_Some_inv_l _ _ x); naive_solver. Qed.
143
  Lemma equiv_Some_inv_r' `{!Equivalence (@{A})} mx y :
144
    mx  Some y   y', mx = Some y'  y  y'.
145
  Proof. intros ?%(equiv_Some_inv_r _ _ y); naive_solver. Qed.
146

147
  Global Instance is_Some_proper : Proper ((@{option A}) ==> iff) is_Some.
148
  Proof. inversion_clear 1; split; eauto. Qed.
149 150 151
  Global Instance from_option_proper {B} (R : relation B) (f : A  B) :
    Proper (() ==> R) f  Proper (R ==> () ==> R) (from_option f).
  Proof. destruct 3; simpl; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
152 153
End setoids.

154 155
Typeclasses Opaque option_equiv.

156
(** Equality on [option] is decidable. *)
157 158 159 160
Instance option_eq_None_dec {A} (mx : option A) : Decision (mx = None) :=
  match mx with Some _ => right (Some_ne_None _) | None => left eq_refl end.
Instance option_None_eq_dec {A} (mx : option A) : Decision (None = mx) :=
  match mx with Some _ => right (None_ne_Some _) | None => left eq_refl end.
161
Instance option_eq_dec `{dec : EqDecision A} : EqDecision (option A).
162
Proof.
163
 refine (λ mx my,
164 165
  match mx, my with
  | Some x, Some y => cast_if (decide (x = y))
166
  | None, None => left _ | _, _ => right _
167
  end); clear dec; abstract congruence.
168
Defined.
Robbert Krebbers's avatar
Robbert Krebbers committed
169

170
(** * Monadic operations *)
171
Instance option_ret: MRet option := @Some.
172 173 174 175
Instance option_bind: MBind option := λ A B f mx,
  match mx with Some x => f x | None => None end.
Instance option_join: MJoin option := λ A mmx,
  match mmx with Some mx => mx | None => None end.
176
Instance option_fmap: FMap option := @option_map.
177 178
Instance option_guard: MGuard option := λ P dec A f,
  match dec with left H => f H | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
179

180 181 182 183 184
Lemma fmap_is_Some {A B} (f : A  B) mx : is_Some (f <$> mx)  is_Some mx.
Proof. unfold is_Some; destruct mx; naive_solver. Qed.
Lemma fmap_Some {A B} (f : A  B) mx y :
  f <$> mx = Some y   x, mx = Some x  y = f x.
Proof. destruct mx; naive_solver. Qed.
185 186 187 188 189
Lemma fmap_Some_1 {A B} (f : A  B) mx y :
  f <$> mx = Some y   x, mx = Some x  y = f x.
Proof. apply fmap_Some. Qed.
Lemma fmap_Some_2 {A B} (f : A  B) mx x : mx = Some x  f <$> mx = Some (f x).
Proof. intros. apply fmap_Some; eauto. Qed.
190
Lemma fmap_Some_equiv {A B} `{Equiv B} `{!Equivalence (@{B})} (f : A  B) mx y :
Ralf Jung's avatar
Ralf Jung committed
191 192 193 194 195 196 197 198
  f <$> mx  Some y   x, mx = Some x  y  f x.
Proof.
  destruct mx; simpl; split.
  - intros ?%Some_equiv_inj. eauto.
  - intros (? & ->%Some_inj & ?). constructor. done.
  - intros ?%symmetry%equiv_None. done.
  - intros (? & ? & ?). done.
Qed.
199
Lemma fmap_Some_equiv_1 {A B} `{Equiv B} `{!Equivalence (@{B})} (f : A  B) mx y :
200
  f <$> mx  Some y   x, mx = Some x  y  f x.
201
Proof. by rewrite fmap_Some_equiv. Qed.
202 203 204 205 206
Lemma fmap_None {A B} (f : A  B) mx : f <$> mx = None  mx = None.
Proof. by destruct mx. Qed.
Lemma option_fmap_id {A} (mx : option A) : id <$> mx = mx.
Proof. by destruct mx. Qed.
Lemma option_fmap_compose {A B} (f : A  B) {C} (g : B  C) mx :
207
  g  f <$> mx = g <$> (f <$> mx).
208 209 210 211
Proof. by destruct mx. Qed.
Lemma option_fmap_ext {A B} (f g : A  B) mx :
  ( x, f x = g x)  f <$> mx = g <$> mx.
Proof. intros; destruct mx; f_equal/=; auto. Qed.
212
Lemma option_fmap_equiv_ext `{Equiv A, Equiv B} (f g : A  B) (mx : option A) :
213 214 215 216 217
  ( x, f x  g x)  f <$> mx  g <$> mx.
Proof. destruct mx; constructor; auto. Qed.
Lemma option_fmap_bind {A B C} (f : A  B) (g : B  option C) mx :
  (f <$> mx) = g = mx = g  f.
Proof. by destruct mx. Qed.
218
Lemma option_bind_assoc {A B C} (f : A  option B)
219 220 221 222 223 224 225
  (g : B  option C) (mx : option A) : (mx = f) = g = mx = (mbind g  f).
Proof. by destruct mx; simpl. Qed.
Lemma option_bind_ext {A B} (f g : A  option B) mx my :
  ( x, f x = g x)  mx = my  mx = f = my = g.
Proof. destruct mx, my; naive_solver. Qed.
Lemma option_bind_ext_fun {A B} (f g : A  option B) mx :
  ( x, f x = g x)  mx = f = mx = g.
226
Proof. intros. by apply option_bind_ext. Qed.
227 228 229 230 231 232 233 234
Lemma bind_Some {A B} (f : A  option B) (mx : option A) y :
  mx = f = Some y   x, mx = Some x  f x = Some y.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_None {A B} (f : A  option B) (mx : option A) :
  mx = f = None  mx = None   x, mx = Some x  f x = None.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_with_Some {A} (mx : option A) : mx = Some = mx.
Proof. by destruct mx. Qed.
235

236
Instance option_fmap_proper `{Equiv A, Equiv B} :
237
  Proper ((() ==> ()) ==> (@{option A}) ==> (@{option B})) fmap.
238
Proof. destruct 2; constructor; auto. Qed.
239
Instance option_mbind_proper `{Equiv A, Equiv B} :
240
  Proper ((() ==> ()) ==> (@{option A}) ==> (@{option B})) mbind.
241 242
Proof. destruct 2; simpl; try constructor; auto. Qed.
Instance option_mjoin_proper `{Equiv A} :
243
  Proper (() ==> (@{option (option A)})) mjoin.
244
Proof. destruct 1 as [?? []|]; simpl; by constructor. Qed.
245

246 247 248 249 250
(** ** Inverses of constructors *)
(** We can do this in a fancy way using dependent types, but rewrite does
not particularly like type level reductions. *)
Class Maybe {A B : Type} (c : A  B) :=
  maybe : B  option A.
251
Arguments maybe {_ _} _ {_} !_ / : assert.
252 253
Class Maybe2 {A1 A2 B : Type} (c : A1  A2  B) :=
  maybe2 : B  option (A1 * A2).
254
Arguments maybe2 {_ _ _} _ {_} !_ / : assert.
255 256
Class Maybe3 {A1 A2 A3 B : Type} (c : A1  A2  A3  B) :=
  maybe3 : B  option (A1 * A2 * A3).
257
Arguments maybe3 {_ _ _ _} _ {_} !_ / : assert.
258 259
Class Maybe4 {A1 A2 A3 A4 B : Type} (c : A1  A2  A3  A4  B) :=
  maybe4 : B  option (A1 * A2 * A3 * A4).
260
Arguments maybe4 {_ _ _ _ _} _ {_} !_ / : assert.
261 262 263

Instance maybe_comp `{Maybe B C c1, Maybe A B c2} : Maybe (c1  c2) := λ x,
  maybe c1 x = maybe c2.
264
Arguments maybe_comp _ _ _ _ _ _ _ !_ / : assert.
265 266 267 268 269

Instance maybe_inl {A B} : Maybe (@inl A B) := λ xy,
  match xy with inl x => Some x | _ => None end.
Instance maybe_inr {A B} : Maybe (@inr A B) := λ xy,
  match xy with inr y => Some y | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
270
Instance maybe_Some {A} : Maybe (@Some A) := id.
271
Arguments maybe_Some _ !_ / : assert.
272

273
(** * Union, intersection and difference *)
274
Instance option_union_with {A} : UnionWith A (option A) := λ f mx my,
275 276 277 278
  match mx, my with
  | Some x, Some y => f x y
  | Some x, None => Some x
  | None, Some y => Some y
279 280
  | None, None => None
  end.
281 282 283
Instance option_intersection_with {A} : IntersectionWith A (option A) :=
  λ f mx my, match mx, my with Some x, Some y => f x y | _, _ => None end.
Instance option_difference_with {A} : DifferenceWith A (option A) := λ f mx my,
284 285 286
  match mx, my with
  | Some x, Some y => f x y
  | Some x, None => Some x
287 288 289
  | None, _ => None
  end.
Instance option_union {A} : Union (option A) := union_with (λ x _, Some x).
290 291 292 293

Lemma option_union_Some {A} (mx my : option A) z :
  mx  my = Some z  mx = Some z  my = Some z.
Proof. destruct mx, my; naive_solver. Qed.
294

295 296 297 298
Class DiagNone {A B C} (f : option A  option B  option C) :=
  diag_none : f None None = None.

Section union_intersection_difference.
299
  Context {A} (f : A  A  option A).
300 301 302 303 304 305 306 307

  Global Instance union_with_diag_none : DiagNone (union_with f).
  Proof. reflexivity. Qed.
  Global Instance intersection_with_diag_none : DiagNone (intersection_with f).
  Proof. reflexivity. Qed.
  Global Instance difference_with_diag_none : DiagNone (difference_with f).
  Proof. reflexivity. Qed.
  Global Instance union_with_left_id : LeftId (=) None (union_with f).
308
  Proof. by intros [?|]. Qed.
309
  Global Instance union_with_right_id : RightId (=) None (union_with f).
310
  Proof. by intros [?|]. Qed.
311
  Global Instance union_with_comm :
312
    Comm (=) f  Comm (=@{option A}) (union_with f).
313
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
314
  Global Instance intersection_with_left_ab : LeftAbsorb (=) None (intersection_with f).
315
  Proof. by intros [?|]. Qed.
316
  Global Instance intersection_with_right_ab : RightAbsorb (=) None (intersection_with f).
317
  Proof. by intros [?|]. Qed.
318
  Global Instance difference_with_comm :
319
    Comm (=) f  Comm (=@{option A}) (intersection_with f).
320
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
321
  Global Instance difference_with_right_id : RightId (=) None (difference_with f).
322
  Proof. by intros [?|]. Qed.
323
End union_intersection_difference.
324 325

(** * Tactics *)
326 327
Tactic Notation "case_option_guard" "as" ident(Hx) :=
  match goal with
328
  | H : context C [@mguard option _ ?P ?dec] |- _ =>
329 330
    change (@mguard option _ P dec) with (λ A (f : P  option A),
      match @decide P dec with left H' => f H' | _ => None end) in *;
331
    destruct_decide (@decide P dec) as Hx
332
  | |- context C [@mguard option _ ?P ?dec] =>
333 334
    change (@mguard option _ P dec) with (λ A (f : P  option A),
      match @decide P dec with left H' => f H' | _ => None end) in *;
335
    destruct_decide (@decide P dec) as Hx
336 337 338
  end.
Tactic Notation "case_option_guard" :=
  let H := fresh in case_option_guard as H.
339

340
Lemma option_guard_True {A} P `{Decision P} (mx : option A) :
341
  P  (guard P; mx) = mx.
Robbert Krebbers's avatar
Robbert Krebbers committed
342
Proof. intros. by case_option_guard. Qed.
343
Lemma option_guard_False {A} P `{Decision P} (mx : option A) :
344
  ¬P  (guard P; mx) = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
345
Proof. intros. by case_option_guard. Qed.
346
Lemma option_guard_iff {A} P Q `{Decision P, Decision Q} (mx : option A) :
347
  (P  Q)  (guard P; mx) = guard Q; mx.
Robbert Krebbers's avatar
Robbert Krebbers committed
348
Proof. intros [??]. repeat case_option_guard; intuition. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
349

350
Tactic Notation "simpl_option" "by" tactic3(tac) :=
351
  let assert_Some_None A mx H := first
352
    [ let x := fresh in evar (x:A); let x' := eval unfold x in x in clear x;
353 354
      assert (mx = Some x') as H by tac
    | assert (mx = None) as H by tac ]
355
  in repeat match goal with
356
  | H : context [@mret _ _ ?A] |- _ =>
357
     change (@mret _ _ A) with (@Some A) in H
358
  | |- context [@mret _ _ ?A] => change (@mret _ _ A) with (@Some A)
359 360 361 362
  | H : context [mbind (M:=option) (A:=?A) ?f ?mx] |- _ =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [fmap (M:=option) (A:=?A) ?f ?mx] |- _ =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
363
  | H : context [from_option (A:=?A) _ _ ?mx] |- _ =>
364 365 366
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [ match ?mx with _ => _ end ] |- _ =>
    match type of mx with
367
    | option ?A =>
368
      let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
369
    end
370 371 372 373
  | |- context [mbind (M:=option) (A:=?A) ?f ?mx] =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [fmap (M:=option) (A:=?A) ?f ?mx] =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
374
  | |- context [from_option (A:=?A) _ _ ?mx] =>
375 376 377
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [ match ?mx with _ => _ end ] =>
    match type of mx with
378
    | option ?A =>
379
      let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
380
    end
381 382 383 384
  | H : context [decide _] |- _ => rewrite decide_True in H by tac
  | H : context [decide _] |- _ => rewrite decide_False in H by tac
  | H : context [mguard _ _] |- _ => rewrite option_guard_False in H by tac
  | H : context [mguard _ _] |- _ => rewrite option_guard_True in H by tac
385 386 387 388
  | _ => rewrite decide_True by tac
  | _ => rewrite decide_False by tac
  | _ => rewrite option_guard_True by tac
  | _ => rewrite option_guard_False by tac
389 390 391 392
  | H : context [None  _] |- _ => rewrite (left_id_L None ()) in H
  | H : context [_  None] |- _ => rewrite (right_id_L None ()) in H
  | |- context [None  _] => rewrite (left_id_L None ())
  | |- context [_  None] => rewrite (right_id_L None ())
Robbert Krebbers's avatar
Robbert Krebbers committed
393
  end.
394
Tactic Notation "simplify_option_eq" "by" tactic3(tac) :=
395
  repeat match goal with
396
  | _ => progress simplify_eq/=
397
  | _ => progress simpl_option by tac
398 399 400 401
  | _ : maybe _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe2 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe3 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe4 _ ?x = Some _ |- _ => is_var x; destruct x
402
  | H : _  _ = Some _ |- _ => apply option_union_Some in H; destruct H
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
  | H : mbind (M:=option) ?f ?mx = ?my |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (f x = my) in H|change (None = my) in H]
  | H : ?my = mbind (M:=option) ?f ?mx |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (my = f x) in H|change (my = None) in H]
  | H : fmap (M:=option) ?f ?mx = ?my |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (Some (f x) = my) in H|change (None = my) in H]
  | H : ?my = fmap (M:=option) ?f ?mx |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (my = Some (f x)) in H|change (my = None) in H]
423
  | _ => progress case_decide
424
  | _ => progress case_option_guard
425
  end.
426
Tactic Notation "simplify_option_eq" := simplify_option_eq by eauto.