option.v 6.03 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5 6 7 8
Require Export base decidable orders.

Lemma None_ne_Some `(a : A) : None  Some a.
Proof. congruence. Qed.
Lemma Some_ne_None `(a : A) : Some a  None.
Proof. congruence. Qed.
Lemma eq_None_ne_Some `(x : option A) a : x = None  x  Some a.
Proof. congruence. Qed.
9
Instance Some_inj {A} : Injective (=) (=) (@Some A).
Robbert Krebbers's avatar
Robbert Krebbers committed
10 11 12 13 14 15 16 17
Proof. congruence. Qed.

Definition option_case {A B} (f : A  B) (b : B) (x : option A) :=
  match x with
  | None => b
  | Some a => f a
  end.

18 19 20 21 22 23
Definition maybe {A} (a : A) (x : option A) :=
  match x with
  | None => a
  | Some a => a
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
24 25 26 27
Lemma option_eq {A} (x y : option A) :
  x = y   a, x = Some a  y = Some a.
Proof.
  split.
28 29 30 31 32 33
  * intros. now subst.
  * intros E. destruct x, y.
    + now apply E.
    + symmetry. now apply E.
    + now apply E.
    + easy.
Robbert Krebbers's avatar
Robbert Krebbers committed
34 35 36 37 38
Qed.

Definition is_Some `(x : option A) :=  a, x = Some a.
Hint Extern 10 (is_Some _) => solve [eexists; eauto].

39
Ltac simplify_is_Some := repeat intro; repeat
Robbert Krebbers's avatar
Robbert Krebbers committed
40
  match goal with
41
  | _ => progress simplify_eqs
Robbert Krebbers's avatar
Robbert Krebbers committed
42 43
  | H : is_Some _ |- _ => destruct H as [??]
  | |- is_Some _ => eauto
44
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

Lemma Some_is_Some `(a : A) : is_Some (Some a).
Proof. simplify_is_Some. Qed.
Lemma None_not_is_Some {A} : ¬is_Some (@None A).
Proof. simplify_is_Some. Qed.

Definition is_Some_1 `(x : option A) : is_Some x  { a | x = Some a } :=
  match x with
  | None => False_rect _  ex_ind None_ne_Some
  | Some a => λ _, aeq_refl
  end.
Lemma is_Some_2 `(x : option A) a : x = Some a  is_Some x.
Proof. simplify_is_Some. Qed.

Lemma eq_None_not_Some `(x : option A) : x = None  ¬is_Some x.
Proof. destruct x; simpl; firstorder congruence. Qed.

Lemma make_eq_Some {A} (x : option A) a : 
  is_Some x  ( b, x = Some b  b = a)  x = Some a.
Proof. intros [??] H. subst. f_equal. auto. Qed.

66 67
Instance option_eq_dec `{dec :  x y : A, Decision (x = y)} (x y : option A) :
    Decision (x = y) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
68 69 70 71 72 73
  match x with
  | Some a =>
    match y with
    | Some b =>
      match dec a b with
      | left H => left (f_equal _ H)
74
      | right H => right (H  injective Some _ _)
Robbert Krebbers's avatar
Robbert Krebbers committed
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
      end
    | None => right (Some_ne_None _)
    end
  | None =>
    match y with
    | Some _ => right (None_ne_Some _)
    | None => left eq_refl
    end
  end.

Inductive option_lift `(P : A  Prop) : option A  Prop :=
  | option_lift_some x : P x  option_lift P (Some x)
  | option_lift_None : option_lift P None.

Ltac option_lift_inv := repeat
  match goal with
  | H : option_lift _ (Some _) |- _ => inversion H; clear H; subst
  | H : option_lift _ None |- _ => inversion H
  end.

Lemma option_lift_inv_Some `(P : A  Prop) x : option_lift P (Some x)  P x.
Proof. intros. now option_lift_inv. Qed.

98 99
Definition option_lift_sig `(P : A  Prop) (x : option A) :
    option_lift P x  option (sig P) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  match x with
  | Some a => λ p, Some (exist _ a (option_lift_inv_Some P a p))
  | None => λ _, None
  end.

Definition option_lift_dsig `(P : A  Prop) `{ x : A, Decision (P x)} 
    (x : option A) : option_lift P x  option (dsig P) :=
  match x with
  | Some a => λ p, Some (dexist a (option_lift_inv_Some P a p))
  | None => λ _, None
  end.

Lemma option_lift_dsig_Some `(P : A  Prop) `{ x : A, Decision (P x)} x y px py :
  option_lift_dsig P x px = Some (ypy)  x = Some y.
Proof.
  split.
116 117
  * destruct x; simpl; intros; now simplify_eqs.
  * intros. subst. simpl. f_equal. now apply dsig_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
118 119 120 121 122 123
Qed.

Lemma option_lift_dsig_is_Some `(P : A  Prop) `{ x : A, Decision (P x)} x px :
  is_Some (option_lift_dsig P x px)  is_Some x.
Proof.
  split.
124 125
  * intros [[??] ?]. eapply is_Some_2, option_lift_dsig_Some; eauto.
  * intros [??]. subst. eapply is_Some_2. reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
Qed.

Instance option_ret: MRet option := @Some.
Instance option_bind: MBind option := λ A B f x,
  match x with
  | Some a => f a
  | None => None
  end.
Instance option_join: MJoin option := λ A x,
  match x with
  | Some x => x
  | None => None
  end.
Instance option_fmap: FMap option := @option_map.

141 142 143 144 145 146 147 148 149 150 151 152
Ltac simplify_options := repeat
  match goal with
  | _ => progress simplify_eqs
  | H : mbind (M:=option) ?f ?o = ?x |- _ =>
    change (option_bind _ _ f o = x) in H;
    destruct o; simpl in H; try discriminate
  | H : context [ ?o = _ ] |- mbind (M:=option) ?f ?o = ?x =>
    change (option_bind _ _ f o = x);
    erewrite H by eauto;
    simpl
  end.

153 154
Lemma option_fmap_is_Some {A B} (f : A  B) (x : option A) :
  is_Some x  is_Some (f <$> x).
Robbert Krebbers's avatar
Robbert Krebbers committed
155
Proof. destruct x; split; intros [??]; subst; compute; eauto; discriminate. Qed.
156 157
Lemma option_fmap_is_None {A B} (f : A  B) (x : option A) :
  x = None  f <$> x = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
158 159 160 161 162 163 164 165 166
Proof. unfold fmap, option_fmap. destruct x; simpl; split; congruence. Qed.

Instance option_union: UnionWith option := λ A f x y,
  match x, y with
  | Some a, Some b => Some (f a b)
  | Some a, None => Some a
  | None, Some b => Some b
  | None, None => None
  end.
167
Instance option_intersection: IntersectionWith option := λ A f x y,
Robbert Krebbers's avatar
Robbert Krebbers committed
168 169 170 171
  match x, y with
  | Some a, Some b => Some (f a b)
  | _, _ => None
  end.
172 173 174 175 176 177
Instance option_difference: DifferenceWith option := λ A f x y,
  match x, y with
  | Some a, Some b => f a b
  | Some a, None => Some a
  | None, _ => None
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
178

179
Section option_union_intersection.
Robbert Krebbers's avatar
Robbert Krebbers committed
180 181 182 183 184 185 186 187 188 189 190 191
  Context {A} (f : A  A  A).

  Global Instance: LeftId (=) None (union_with f).
  Proof. now intros [?|]. Qed.
  Global Instance: RightId (=) None (union_with f).
  Proof. now intros [?|]. Qed.
  Global Instance: Commutative (=) f  Commutative (=) (union_with f).
  Proof. intros ? [?|] [?|]; compute; try reflexivity. now rewrite (commutative f). Qed.
  Global Instance: Associative (=) f  Associative (=) (union_with f).
  Proof. intros ? [?|] [?|] [?|]; compute; try reflexivity. now rewrite (associative f). Qed.
  Global Instance: Idempotent (=) f  Idempotent (=) (union_with f).
  Proof. intros ? [?|]; compute; try reflexivity. now rewrite (idempotent f). Qed.
192 193 194 195 196 197 198 199
End option_union_intersection.

Section option_difference.
  Context {A} (f : A  A  option A).

  Global Instance: RightId (=) None (difference_with f).
  Proof. now intros [?|]. Qed.
End option_difference.