list.v 182 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
7
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9 10 11
Arguments length {_} _ : assert.
Arguments cons {_} _ _ : assert.
Arguments app {_} _ _ : assert.
12

13 14 15
Instance: Params (@length) 1 := {}.
Instance: Params (@cons) 1 := {}.
Instance: Params (@app) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
16

17 18 19
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
20

21
Arguments head {_} _ : assert.
22 23 24
Arguments tail {_} _ : assert.
Arguments take {_} !_ !_ / : assert.
Arguments drop {_} !_ !_ / : assert.
25

26
Instance: Params (@head) 1 := {}.
27 28 29
Instance: Params (@tail) 1 := {}.
Instance: Params (@take) 1 := {}.
Instance: Params (@drop) 1 := {}.
30

31 32
Arguments Permutation {_} _ _ : assert.
Arguments Forall_cons {_} _ _ _ _ _ : assert.
33
Remove Hints Permutation_cons : typeclass_instances.
34

35 36 37 38 39 40
Notation "(::)" := cons (only parsing) : list_scope.
Notation "( x ::)" := (cons x) (only parsing) : list_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : list_scope.
Notation "(++)" := app (only parsing) : list_scope.
Notation "( l ++)" := (app l) (only parsing) : list_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : list_scope.
41 42 43 44 45 46 47 48 49

Infix "≡ₚ" := Permutation (at level 70, no associativity) : stdpp_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : stdpp_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : stdpp_scope.
Notation "(≡ₚ x )" := (λ y, y ≡ₚ x) (only parsing) : stdpp_scope.
Notation "(≢ₚ)" := (λ x y, ¬x ≡ₚ y) (only parsing) : stdpp_scope.
Notation "x ≢ₚ y":= (¬x ≡ₚ y) (at level 70, no associativity) : stdpp_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : stdpp_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : stdpp_scope.
50

51 52 53 54
Infix "≡ₚ@{ A }" :=
  (@Permutation A) (at level 70, no associativity, only parsing) : stdpp_scope.
Notation "(≡ₚ@{ A } )" := (@Permutation A) (only parsing) : stdpp_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
55 56 57
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

58
(** * Definitions *)
59 60 61 62 63 64
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

65 66
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
67 68
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
69
  match l with
70
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
71
  end.
72 73 74

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
75
Instance list_alter {A} : Alter nat A (list A) := λ f,
76
  fix go i l {struct l} :=
77 78
  match l with
  | [] => []
79
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
80
  end.
81

82 83
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
84 85
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
86 87 88 89
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
90 91 92 93 94
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
95
Instance: Params (@list_inserts) 1 := {}.
96

97 98 99
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
100 101
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
102 103
  match l with
  | [] => []
104
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
105
  end.
106 107 108

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
109
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
110
Instance: Params (@option_list) 1 := {}.
111
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
112
  match l with [x] => Some x | _ => None end.
113 114 115 116

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
117
  fix go P _ l := let _ : Filter _ _ := @go in
118 119
  match l with
  | [] => []
120
  | x :: l => if decide (P x) then x :: filter P l else filter P l
121 122 123 124
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
125
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
126 127
  fix go l :=
  match l with
128 129
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
130
  end.
131
Instance: Params (@list_find) 3 := {}.
132 133 134 135

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
136
  match n with 0 => [] | S n => x :: replicate n x end.
137
Instance: Params (@replicate) 2 := {}.
138 139 140

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
141
Instance: Params (@reverse) 1 := {}.
142

143 144 145 146
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
147
Instance: Params (@last) 1 := {}.
148

149 150 151 152 153 154
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
155
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
156
  end.
157
Arguments resize {_} !_ _ !_ : assert.
158
Instance: Params (@resize) 2 := {}.
159

160 161 162
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
163 164
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
165
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
166
  end.
167
Instance: Params (@reshape) 2 := {}.
168

169
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
170 171 172 173
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
174

175 176 177 178
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
179
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
180 181 182

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
183 184
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
185 186 187 188 189 190
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
191 192
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
193 194
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
195
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
196
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
197
  fix go l :=
198
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
199 200 201

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
202 203 204 205 206
Fixpoint imap {A B} (f : nat  A  B) (l : list A) : list B :=
  match l with
  | [] => []
  | x :: l => f 0 x :: imap (f  S) l
  end.
207

208
Definition zipped_map {A B} (f : list A  list A  A  B) :
209 210 211 212 213
    list A  list A  list B := fix go l k :=
  match k with
  | [] => []
  | x :: k => f l k x :: go (x :: l) k
  end.
214

215
Fixpoint imap2 {A B C} (f : nat  A  B  C) (l : list A) (k : list B) : list C :=
Robbert Krebbers's avatar
Robbert Krebbers committed
216
  match l, k with
217 218
  | [], _ | _, [] => []
  | x :: l, y :: k => f 0 x y :: imap2 (f  S) l k
Robbert Krebbers's avatar
Robbert Krebbers committed
219 220
  end.

221 222 223 224 225
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
226 227
Arguments zipped_Forall_nil {_ _} _ : assert.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _ : assert.
228

229 230 231 232 233 234 235
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
236 237 238 239

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
240
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
241 242
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
243
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
244

245 246 247 248
(** The predicate [suffix] holds if the first list is a suffix of the second.
The predicate [prefix] holds if the first list is a prefix of the second. *)
Definition suffix {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
249 250
Infix "`suffix_of`" := suffix (at level 70) : stdpp_scope.
Infix "`prefix_of`" := prefix (at level 70) : stdpp_scope.
251 252
Hint Extern 0 (_ `prefix_of` _) => reflexivity : core.
Hint Extern 0 (_ `suffix_of` _) => reflexivity : core.
253

254
Section prefix_suffix_ops.
255 256
  Context `{EqDecision A}.

257
  Definition max_prefix : list A  list A  list A * list A * list A :=
258 259 260 261 262
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
263
      if decide_rel (=) x1 x2
264
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
265
    end.
266 267
  Definition max_suffix (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix (reverse l1) (reverse l2) with
268 269
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
270 271
  Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
272
End prefix_suffix_ops.
273

274
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
275 276 277
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
278
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
279
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
280
Infix "`sublist_of`" := sublist (at level 70) : stdpp_scope.
281
Hint Extern 0 (_ `sublist_of` _) => reflexivity : core.
282

283
(** A list [l2] submseteq a list [l1] if [l2] is obtained by removing elements
284
from [l1] while possiblity changing the order. *)
285 286 287 288 289 290
Inductive submseteq {A} : relation (list A) :=
  | submseteq_nil : submseteq [] []
  | submseteq_skip x l1 l2 : submseteq l1 l2  submseteq (x :: l1) (x :: l2)
  | submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
  | submseteq_cons x l1 l2 : submseteq l1 l2  submseteq l1 (x :: l2)
  | submseteq_trans l1 l2 l3 : submseteq l1 l2  submseteq l2 l3  submseteq l1 l3.
291
Infix "⊆+" := submseteq (at level 70) : stdpp_scope.
292
Hint Extern 0 (_ + _) => reflexivity : core.
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307
(** Removes [x] from the list [l]. The function returns a [Some] when the
+removal succeeds and [None] when [x] is not in [l]. *)
Fixpoint list_remove `{EqDecision A} (x : A) (l : list A) : option (list A) :=
  match l with
  | [] => None
  | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
  end.

(** Removes all elements in the list [k] from the list [l]. The function returns
a [Some] when the removal succeeds and [None] some element of [k] is not in [l]. *)
Fixpoint list_remove_list `{EqDecision A} (k : list A) (l : list A) : option (list A) :=
  match k with
  | [] => Some l | x :: k => list_remove x l = list_remove_list k
  end.
308

309 310 311 312 313
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
314

315 316
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2,  x, x  l1  x  l2.
317

318
Section list_set.
319
  Context `{dec : EqDecision A}.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
  Global Instance elem_of_list_dec : RelDecision (@{list A}).
321 322
  Proof.
   refine (
323
    fix go x l :=
324 325
    match l return Decision (x  l) with
    | [] => right _
326
    | y :: l => cast_if_or (decide (x = y)) (go x l)
327 328 329 330 331 332 333 334 335 336 337 338 339
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
340
      then list_difference l k else x :: list_difference l k
341
    end.
342
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
343 344 345 346 347
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
348
      then x :: list_intersection l k else list_intersection l k
349 350 351 352 353 354 355 356 357
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
358

359 360 361 362
(** These next functions allow to efficiently encode lists of positives (bit
strings) into a single positive and go in the other direction as well. This is
for example used for the countable instance of lists and in namespaces.
 The main functions are [positives_flatten] and [positives_unflatten]. *)
363 364 365 366 367 368
Fixpoint positives_flatten_go (xs : list positive) (acc : positive) : positive :=
  match xs with
  | [] => acc
  | x :: xs => positives_flatten_go xs (acc~1~0 ++ Preverse (Pdup x))
  end.

369 370 371 372 373 374 375
(** Flatten a list of positives into a single positive by duplicating the bits
of each element, so that:

- [0 -> 00]
- [1 -> 11]

and then separating each element with [10]. *)
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
Definition positives_flatten (xs : list positive) : positive :=
  positives_flatten_go xs 1.

Fixpoint positives_unflatten_go
        (p : positive)
        (acc_xs : list positive)
        (acc_elm : positive)
  : option (list positive) :=
  match p with
  | 1 => Some acc_xs
  | p'~0~0 => positives_unflatten_go p' acc_xs (acc_elm~0)
  | p'~1~1 => positives_unflatten_go p' acc_xs (acc_elm~1)
  | p'~1~0 => positives_unflatten_go p' (acc_elm :: acc_xs) 1
  | _ => None
  end%positive.

(** Unflatten a positive into a list of positives, assuming the encoding
393
used by [positives_flatten]. *)
394 395 396
Definition positives_unflatten (p : positive) : option (list positive) :=
  positives_unflatten_go p [] 1.

Simon Spies's avatar
Simon Spies committed
397 398 399 400 401 402 403

(** [seqZ m n] generates the sequence [m], [m + 1], ..., [m + n - 1] 
over integers, provided [n >= 0]. If n < 0, then the range is empty. **)
Definition seqZ (m len: Z) : list Z :=
  (λ i: nat, Z.add i m) <$> (seq 0 (Z.to_nat len)).
Arguments seqZ : simpl never.

404
(** * Basic tactics on lists *)
405
(** The tactic [discriminate_list] discharges a goal if it submseteq
406 407
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
408
Tactic Notation "discriminate_list" hyp(H) :=
409
  apply (f_equal length) in H;
410
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
411
Tactic Notation "discriminate_list" :=
412
  match goal with H : _ =@{list _} _ |- _ => discriminate_list H end.
413

414
(** The tactic [simplify_list_eq] simplifies hypotheses involving
415 416
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
417
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
418 419
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
420
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
421 422
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
423
  intros ? Hl. apply app_inj_1; auto.
424 425
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
426
Ltac simplify_list_eq :=
427
  repeat match goal with
428
  | _ => progress simplify_eq/=
429
  | H : _ ++ _ = _ ++ _ |- _ => first
430
    [ apply app_inv_head in H | apply app_inv_tail in H
431 432
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
433
  | H : [?x] !! ?i = Some ?y |- _ =>
434
    destruct i; [change (Some x = Some y) in H | discriminate]
435
  end.
436

437 438
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
439
Context {A : Type}.
440 441
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
442

443
Global Instance: Inj2 (=) (=) (=) (@cons A).
444
Proof. by injection 1. Qed.
445
Global Instance:  k, Inj (=) (=) (k ++).
446
Proof. intros ???. apply app_inv_head. Qed.
447
Global Instance:  k, Inj (=) (=) (++ k).
448
Proof. intros ???. apply app_inv_tail. Qed.
449
Global Instance: Assoc (=) (@app A).
450 451 452 453 454
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
455

456
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
457
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
458 459
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
460
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
461 462 463
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
464
Proof.
465
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
466 467 468
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
469
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
470
Qed.
471 472
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
473 474 475
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
476
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
477 478 479 480
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
481
Lemma nil_or_length_pos l : l = []  length l  0.
482
Proof. destruct l; simpl; auto with lia. Qed.
483
Lemma nil_length_inv l : length l = 0  l = [].
484 485
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
486
Proof. by destruct i. Qed.
487
Lemma lookup_tail l i : tail l !! i = l !! S i.
488
Proof. by destruct l. Qed.
489
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
490
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
491 492 493
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
494
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
495 496 497 498 499 500 501 502
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
503 504 505
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
506
Proof.
507
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
508
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
509 510
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
511
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
512
Qed.
513
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
514
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
515 516
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
517
Lemma lookup_app_r l1 l2 i :
518
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
519 520 521 522 523 524
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
525
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
526
      simplify_eq/=; auto with lia.
527
    destruct (IH i) as [?|[??]]; auto with lia.
528
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
529
Qed.
530 531 532
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
533

534
Lemma nth_lookup l i d : nth i l d = default d (l !! i).
535 536 537 538
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x  nth i l d = x.
Proof. rewrite nth_lookup. by intros ->. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l  i}.
Ralf Jung's avatar
Ralf Jung committed
539
Proof.
540
  rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Ralf Jung's avatar
Ralf Jung committed
541 542
Qed.

543
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
544
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
545
Lemma alter_length f l i : length (alter f i l) = length l.
546
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
547
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
548
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
549
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
550
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
551
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
552
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
553
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
554
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
555
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
556
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
557 558 559 560 561 562
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
563
  - intros Hy. assert (j < length l).
564 565
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
566
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
567 568 569
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
570
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
571 572
Lemma list_insert_id l i x : l !! i = Some x  <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] [=]; f_equal/=; auto. Qed.
573 574
Lemma list_insert_ge l i x : length l  i  <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] ?; f_equal/=; auto with lia. Qed.
575 576 577
Lemma list_insert_insert l i x y :
  <[i:=x]> (<[i:=y]> l) = <[i:=x]> l.
Proof. revert i. induction l; intros [|i]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
578

579 580
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
581
Proof.
582
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
583 584
  - by exists 1, x1.
  - by exists 0, x0.
585
Qed.
586 587
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
588
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
589
Lemma alter_app_r f l1 l2 i :
590
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
591
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
592 593
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
594 595 596 597
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
598
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
599
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
600 601
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
602
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
603 604
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
605
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
606 607
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
608
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
609 610
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
611
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
612
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
613
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
614 615
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
616 617 618 619
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
620
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
621
Proof. induction l1; f_equal/=; auto. Qed.
622

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
660
  - intros Hy. assert (j < length l).
661 662
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
663
  - intuition. by rewrite list_lookup_inserts by lia.
664 665 666 667 668 669 670 671
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

672
(** ** Properties of the [elem_of] predicate *)
673
Lemma not_elem_of_nil x : x  [].
674
Proof. by inversion 1. Qed.
675
Lemma elem_of_nil x : x  []  False.
676
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
677
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
678
Proof. destruct l. done. by edestruct 1; constructor. Qed.
679 680
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
681
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
682
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
683
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
684
Proof. rewrite elem_of_cons. tauto. Qed.
685
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
686
Proof.
687
  induction l1.
688 689
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
690
Qed.
691
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
692
Proof. rewrite elem_of_app. tauto. Qed.
693
Lemma elem_of_list_singleton x y : x  [y]  x = y.
694
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
695
Global Instance elem_of_list_permutation_proper x : Proper ((≡ₚ) ==> iff) (x ).
696
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
697
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
698
Proof.
699
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
700
  by exists (y :: l1), l2.
701
Qed.
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
Lemma elem_of_list_split_l `{EqDecision A} l x :
  x  l   l1 l2, l = l1 ++ x :: l2  x  l1.
Proof.
  induction 1 as [x l|x y l ? IH].
  { exists [], l. rewrite elem_of_nil. naive_solver. }
  destruct (decide (x = y)) as [->|?].
  - exists [], l. rewrite elem_of_nil. naive_solver.
  - destruct IH as (l1 & l2 & -> & ?).
    exists (y :: l1), l2. rewrite elem_of_cons. naive_solver.
Qed.
Lemma elem_of_list_split_r `{EqDecision A} l x :
  x  l   l1 l2, l = l1 ++ x :: l2  x  l2.
Proof.
  induction l as [|y l IH] using rev_ind.
  { by rewrite elem_of_nil. }
  destruct (decide (x = y)) as [->|].
  - exists l, []. rewrite elem_of_nil. naive_solver.
  - rewrite elem_of_app, elem_of_list_singleton. intros [?| ->]; try done.
    destruct IH as (l1 & l2 & -> & ?); auto.
    exists l1, (l2 ++ [y]).
    rewrite elem_of_app, elem_of_list_singleton, <-(assoc_L (++)). naive_solver.
Qed.
724
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
725
Proof.
726 727
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
728
Qed.
729
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
730
Proof.
731
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
732
Qed.
733 734
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
735 736 737 738
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
739
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
740
      setoid_rewrite elem_of_cons; naive_solver.
741
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
742
      simplify_eq; try constructor; auto.
743
Qed.
744 745 746 747 748 749 750
Lemma list_elem_of_insert l i x : i < length l  x  <[i:=x]>l.
Proof. intros. by eapply elem_of_list_lookup_2, list_lookup_insert. Qed.
Lemma nth_elem_of l i d : i < length l  nth i l d  l.
Proof.
  intros; eapply elem_of_list_lookup_2.
  destruct (nth_lookup_or_length l i d); [done | by lia].
Qed.
751

752
(** ** Properties of the [NoDup] predicate *)
753 754
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
755
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
756
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
757
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
758
Proof. rewrite NoDup_cons. by intros [??]. Qed.
759
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
760
Proof. rewrite NoDup_cons. by intros [??]. Qed.
761
Lemma NoDup_singleton x : NoDup [x].
762
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
763
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
764
Proof.
765
  induction l; simpl.
766 767
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
768
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
769
Qed.
770
Global Instance NoDup_proper: Proper ((≡ₚ) ==> iff) (@NoDup A).
771 772
Proof.
  induction 1 as [|x l k Hlk IH | |].
773 774 775 776
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
777
Qed.
778 779
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
780 781
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
782 783
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
784 785
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
786 787
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
788
Proof.
789 790
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
791
  - rewrite elem_of_list_lookup. intros [i ?].
792
    by feed pose proof (Hl (S i) 0 x); auto.
793
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
794
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
795

796
Section no_dup_dec.
797
  Context `{!EqDecision A}.
798 799 800 801
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
802
    | x :: l =>
803 804 805 806 807 808 809 810
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
811
    end.
812
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
813 814
  Proof.
    split; induction l; simpl; repeat case_decide;
815
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
816
  Qed.
817
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
818 819 820 821
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
822
End no_dup_dec.
823

824 825
(** ** Set operations on lists *)
Section list_set.
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
        x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    - induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
            x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    - intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.