(* Copyright (c) 2012-2015, Robbert Krebbers. *) (* This file is distributed under the terms of the BSD license. *) (** This files extends the implementation of finite over [positive] to finite maps whose keys range over Coq's data type of binary naturals [N]. *) From stdpp Require Import pmap mapset. From stdpp Require Export prelude fin_maps. Local Open Scope N_scope. Record Nmap (A : Type) : Type := NMap { Nmap_0 : option A; Nmap_pos : Pmap A }. Arguments Nmap_0 {_} _. Arguments Nmap_pos {_} _. Arguments NMap {_} _ _. Instance Nmap_eq_dec `{EqDecision A} : EqDecision (Nmap A). Proof. refine (λ t1 t2, match t1, t2 with | NMap x t1, NMap y t2 => cast_if_and (decide (x = y)) (decide (t1 = t2)) end); abstract congruence. Defined. Instance Nempty {A} : Empty (Nmap A) := NMap None ∅. Global Opaque Nempty. Instance Nlookup {A} : Lookup N A (Nmap A) := λ i t, match i with | N0 => Nmap_0 t | Npos p => Nmap_pos t !! p end. Instance Npartial_alter {A} : PartialAlter N A (Nmap A) := λ f i t, match i, t with | N0, NMap o t => NMap (f o) t | Npos p, NMap o t => NMap o (partial_alter f p t) end. Instance Nto_list {A} : FinMapToList N A (Nmap A) := λ t, match t with | NMap o t => default [] o (λ x, [(0,x)]) ++ (prod_map Npos id <$> map_to_list t) end. Instance Nomap: OMap Nmap := λ A B f t, match t with NMap o t => NMap (o ≫= f) (omap f t) end. Instance Nmerge: Merge Nmap := λ A B C f t1 t2, match t1, t2 with | NMap o1 t1, NMap o2 t2 => NMap (f o1 o2) (merge f t1 t2) end. Instance Nfmap: FMap Nmap := λ A B f t, match t with NMap o t => NMap (f <$> o) (f <$> t) end. Instance: FinMap N Nmap. Proof. split. - intros ? [??] [??] H. f_equal; [apply (H 0)|]. apply map_eq. intros i. apply (H (Npos i)). - by intros ? [|?]. - intros ? f [? t] [|i]; simpl; [done |]. apply lookup_partial_alter. - intros ? f [? t] [|i] [|j]; simpl; try intuition congruence. intros. apply lookup_partial_alter_ne. congruence. - intros ??? [??] []; simpl. done. apply lookup_fmap. - intros ? [[x|] t]; unfold map_to_list; simpl. + constructor. * rewrite elem_of_list_fmap. by intros [[??] [??]]. * by apply (NoDup_fmap _), NoDup_map_to_list. + apply (NoDup_fmap _), NoDup_map_to_list. - intros ? t i x. unfold map_to_list. split. + destruct t as [[y|] t]; simpl. * rewrite elem_of_cons, elem_of_list_fmap. intros [? | [[??] [??]]]; simplify_eq/=; [done |]. by apply elem_of_map_to_list. * rewrite elem_of_list_fmap; intros [[??] [??]]; simplify_eq/=. by apply elem_of_map_to_list. + destruct t as [[y|] t]; simpl. * rewrite elem_of_cons, elem_of_list_fmap. destruct i as [|i]; simpl; [intuition congruence |]. intros. right. exists (i, x). by rewrite elem_of_map_to_list. * rewrite elem_of_list_fmap. destruct i as [|i]; simpl; [done |]. intros. exists (i, x). by rewrite elem_of_map_to_list. - intros ?? f [??] [|?]; simpl; [done|]; apply (lookup_omap f). - intros ??? f ? [??] [??] [|?]; simpl; [done|]; apply (lookup_merge f). Qed. (** * Finite sets *) (** We construct sets of [N]s satisfying extensional equality. *) Notation Nset := (mapset Nmap). Instance Nmap_dom {A} : Dom (Nmap A) Nset := mapset_dom. Instance: FinMapDom N Nmap Nset := mapset_dom_spec. (** * Fresh numbers *) Definition Nfresh {A} (m : Nmap A) : N := match m with NMap None _ => 0 | NMap _ m => Npos (Pfresh m) end. Lemma Nfresh_fresh {A} (m : Nmap A) : m !! Nfresh m = None. Proof. destruct m as [[]]. apply Pfresh_fresh. done. Qed. Instance Nset_fresh : Fresh N Nset := λ X, let (m) := X in Nfresh m. Instance Nset_fresh_spec : FreshSpec N Nset. Proof. split. - apply _. - intros X Y; rewrite <-elem_of_equiv_L. by intros ->. - unfold elem_of, mapset_elem_of, fresh; intros [m]; simpl. by rewrite Nfresh_fresh. Qed.