From stdpp Require Import gmap. Goal {[1; 2; 3]} =@{gset nat} ∅. Proof. Fail progress simpl. Fail progress cbn. Show. Abort. Goal elements (C := gset nat) {[1; 2; 3]} = []. Proof. Fail progress simpl. Fail progress cbn. Show. Abort. Goal {[1; 2; 3]} ∖ {[ 1 ]} ∪ {[ 4 ]} ∩ {[ 10 ]} =@{gset nat} ∅ ∖ {[ 2 ]}. Proof. Fail progress simpl. Fail progress cbn. Show. Abort. Goal 1 ∈ dom (M := gmap nat nat) (gset nat) (<[ 1 := 2 ]> ∅). Proof. Fail progress simpl. Fail progress cbn. Show. Abort. Goal bool_decide (∅ =@{gset nat} {[ 1; 2; 3 ]}) = false. Proof. Fail progress simpl. Fail progress cbn. Show. reflexivity. Qed. Goal bool_decide (∅ ≡@{gset nat} {[ 1; 2; 3 ]}) = false. Proof. Fail progress simpl. Fail progress cbn. Show. reflexivity. Qed. Goal bool_decide (1 ∈@{gset nat} {[ 1; 2; 3 ]}) = true. Proof. Fail progress simpl. Fail progress cbn. Show. reflexivity. Qed. Goal bool_decide (∅ ##@{gset nat} {[ 1; 2; 3 ]}) = true. Proof. Fail progress simpl. Fail progress cbn. Show. reflexivity. Qed. Goal bool_decide (∅ ⊆@{gset nat} {[ 1; 2; 3 ]}) = true. Proof. Fail progress simpl. Fail progress cbn. Show. reflexivity. Qed.