(* Copyright (c) 2012-2017, Coq-std++ developers. *) (* This file is distributed under the terms of the BSD license. *) From stdpp Require Export strings. From stdpp Require Import relations. From Coq Require Import Ascii. Set Default Proof Using "Type". Class Pretty A := pretty : A → string. Definition pretty_N_char (x : N) : ascii := match x with | 0 => "0" | 1 => "1" | 2 => "2" | 3 => "3" | 4 => "4" | 5 => "5" | 6 => "6" | 7 => "7" | 8 => "8" | _ => "9" end%char%N. Fixpoint pretty_N_go_help (x : N) (acc : Acc (<)%N x) (s : string) : string := match decide (0 < x)%N with | left H => pretty_N_go_help (x `div` 10)%N (Acc_inv acc (N.div_lt x 10 H eq_refl)) (String (pretty_N_char (x `mod` 10)) s) | right _ => s end. Definition pretty_N_go (x : N) : string → string := pretty_N_go_help x (wf_guard 32 N.lt_wf_0 x). Lemma pretty_N_go_0 s : pretty_N_go 0 s = s. Proof. done. Qed. Lemma pretty_N_go_help_irrel x acc1 acc2 s : pretty_N_go_help x acc1 s = pretty_N_go_help x acc2 s. Proof. revert x acc1 acc2 s; fix 2; intros x [acc1] [acc2] s; simpl. destruct (decide (0 < x)%N); auto. Qed. Lemma pretty_N_go_step x s : (0 < x)%N → pretty_N_go x s = pretty_N_go (x `div` 10) (String (pretty_N_char (x `mod` 10)) s). Proof. unfold pretty_N_go; intros; destruct (wf_guard 32 N.lt_wf_0 x). destruct wf_guard. (* this makes coqchk happy. *) unfold pretty_N_go_help at 1; fold pretty_N_go_help. by destruct (decide (0 < x)%N); auto using pretty_N_go_help_irrel. Qed. Instance pretty_N : Pretty N := λ x, pretty_N_go x ""%string. Lemma pretty_N_unfold x : pretty x = pretty_N_go x "". Proof. done. Qed. Instance pretty_N_inj : Inj (@eq N) (=) pretty. Proof. assert (∀ x y, x < 10 → y < 10 → pretty_N_char x = pretty_N_char y → x = y)%N. { compute; intros. by repeat (discriminate || case_match). } cut (∀ x y s s', pretty_N_go x s = pretty_N_go y s' → String.length s = String.length s' → x = y ∧ s = s'). { intros help x y Hp. eapply (help x y "" ""); [by rewrite <-!pretty_N_unfold|done]. } assert (∀ x s, ¬String.length (pretty_N_go x s) < String.length s) as help. { setoid_rewrite <-Nat.le_ngt. intros x; induction (N.lt_wf_0 x) as [x _ IH]; intros s. assert (x = 0 ∨ 0 < x)%N as [->|?] by lia; [by rewrite pretty_N_go_0|]. rewrite pretty_N_go_step by done. etrans; [|by eapply IH, N.div_lt]; simpl; lia. } intros x; induction (N.lt_wf_0 x) as [x _ IH]; intros y s s'. assert ((x = 0 ∨ 0 < x) ∧ (y = 0 ∨ 0 < y))%N as [[->|?] [->|?]] by lia; rewrite ?pretty_N_go_0, ?pretty_N_go_step, ?(pretty_N_go_step y) by done. { done. } { intros -> Hlen; edestruct help; rewrite Hlen; simpl; lia. } { intros <- Hlen; edestruct help; rewrite <-Hlen; simpl; lia. } intros Hs Hlen; apply IH in Hs; destruct Hs; simplify_eq/=; split_and?; auto using N.div_lt_upper_bound with lia. rewrite (N.div_mod x 10), (N.div_mod y 10) by done. auto using N.mod_lt with f_equal. Qed. Instance pretty_Z : Pretty Z := λ x, match x with | Z0 => "" | Zpos x => pretty (Npos x) | Zneg x => "-" +:+ pretty (Npos x) end%string.