(* Copyright (c) 2012-2015, Robbert Krebbers. *) (* This file is distributed under the terms of the BSD license. *) (** This file collects definitions and theorems on collections. Most importantly, it implements some tactics to automatically solve goals involving collections. *) Require Export prelude.base prelude.tactics prelude.orders. Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y, ∀ x, x ∈ X → x ∈ Y. (** * Basic theorems *) Section simple_collection. Context `{SimpleCollection A C}. Lemma elem_of_empty x : x ∈ ∅ ↔ False. Proof. split. apply not_elem_of_empty. done. Qed. Lemma elem_of_union_l x X Y : x ∈ X → x ∈ X ∪ Y. Proof. intros. apply elem_of_union. auto. Qed. Lemma elem_of_union_r x X Y : x ∈ Y → x ∈ X ∪ Y. Proof. intros. apply elem_of_union. auto. Qed. Global Instance: EmptySpec C. Proof. firstorder auto. Qed. Global Instance: JoinSemiLattice C. Proof. firstorder auto. Qed. Lemma elem_of_subseteq X Y : X ⊆ Y ↔ ∀ x, x ∈ X → x ∈ Y. Proof. done. Qed. Lemma elem_of_equiv X Y : X ≡ Y ↔ ∀ x, x ∈ X ↔ x ∈ Y. Proof. firstorder. Qed. Lemma elem_of_equiv_alt X Y : X ≡ Y ↔ (∀ x, x ∈ X → x ∈ Y) ∧ (∀ x, x ∈ Y → x ∈ X). Proof. firstorder. Qed. Lemma elem_of_equiv_empty X : X ≡ ∅ ↔ ∀ x, x ∉ X. Proof. firstorder. Qed. Lemma collection_positive_l X Y : X ∪ Y ≡ ∅ → X ≡ ∅. Proof. rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver. Qed. Lemma collection_positive_l_alt X Y : X ≢ ∅ → X ∪ Y ≢ ∅. Proof. eauto using collection_positive_l. Qed. Lemma elem_of_singleton_1 x y : x ∈ {[y]} → x = y. Proof. by rewrite elem_of_singleton. Qed. Lemma elem_of_singleton_2 x y : x = y → x ∈ {[y]}. Proof. by rewrite elem_of_singleton. Qed. Lemma elem_of_subseteq_singleton x X : x ∈ X ↔ {[ x ]} ⊆ X. Proof. split. * intros ??. rewrite elem_of_singleton. by intros ->. * intros Ex. by apply (Ex x), elem_of_singleton. Qed. Global Instance singleton_proper : Proper ((=) ==> (≡)) singleton. Proof. by repeat intro; subst. Qed. Global Instance elem_of_proper: Proper ((=) ==> (≡) ==> iff) (∈) | 5. Proof. intros ???; subst. firstorder. Qed. Lemma elem_of_union_list Xs x : x ∈ ⋃ Xs ↔ ∃ X, X ∈ Xs ∧ x ∈ X. Proof. split. * induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|]. setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver. * intros [X []]. induction 1; simpl; [by apply elem_of_union_l |]. intros. apply elem_of_union_r; auto. Qed. Lemma non_empty_singleton x : {[ x ]} ≢ ∅. Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed. Lemma not_elem_of_singleton x y : x ∉ {[ y ]} ↔ x ≠ y. Proof. by rewrite elem_of_singleton. Qed. Lemma not_elem_of_union x X Y : x ∉ X ∪ Y ↔ x ∉ X ∧ x ∉ Y. Proof. rewrite elem_of_union. tauto. Qed. Section leibniz. Context `{!LeibnizEquiv C}. Lemma elem_of_equiv_L X Y : X = Y ↔ ∀ x, x ∈ X ↔ x ∈ Y. Proof. unfold_leibniz. apply elem_of_equiv. Qed. Lemma elem_of_equiv_alt_L X Y : X = Y ↔ (∀ x, x ∈ X → x ∈ Y) ∧ (∀ x, x ∈ Y → x ∈ X). Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed. Lemma elem_of_equiv_empty_L X : X = ∅ ↔ ∀ x, x ∉ X. Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed. Lemma collection_positive_l_L X Y : X ∪ Y = ∅ → X = ∅. Proof. unfold_leibniz. apply collection_positive_l. Qed. Lemma collection_positive_l_alt_L X Y : X ≠ ∅ → X ∪ Y ≠ ∅. Proof. unfold_leibniz. apply collection_positive_l_alt. Qed. Lemma non_empty_singleton_L x : {[ x ]} ≠ ∅. Proof. unfold_leibniz. apply non_empty_singleton. Qed. End leibniz. Section dec. Context `{∀ X Y : C, Decision (X ⊆ Y)}. Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x ∈ X) | 100. Proof. refine (cast_if (decide_rel (⊆) {[ x ]} X)); by rewrite elem_of_subseteq_singleton. Defined. End dec. End simple_collection. Definition of_option `{Singleton A C, Empty C} (x : option A) : C := match x with None => ∅ | Some a => {[ a ]} end. Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C := match l with [] => ∅ | x :: l => {[ x ]} ∪ of_list l end. Section of_option_list. Context `{SimpleCollection A C}. Lemma elem_of_of_option (x : A) o : x ∈ of_option o ↔ o = Some x. Proof. destruct o; simpl; rewrite ?elem_of_empty, ?elem_of_singleton; naive_solver. Qed. Lemma elem_of_of_list (x : A) l : x ∈ of_list l ↔ x ∈ l. Proof. split. * induction l; simpl; [by rewrite elem_of_empty|]. rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto. * induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto. Qed. End of_option_list. Global Instance collection_guard `{CollectionMonad M} : MGuard M := λ P dec A x, match dec with left H => x H | _ => ∅ end. Section collection_monad_base. Context `{CollectionMonad M}. Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) : x ∈ guard P; X ↔ P ∧ x ∈ X. Proof. unfold mguard, collection_guard; simpl; case_match; rewrite ?elem_of_empty; naive_solver. Qed. Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) : P → x ∈ X → x ∈ guard P; X. Proof. by rewrite elem_of_guard. Qed. Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X ≡ ∅ ↔ ¬P ∨ X ≡ ∅. Proof. rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard. destruct (decide P); naive_solver. Qed. Lemma bind_empty {A B} (f : A → M B) X : X ≫= f ≡ ∅ ↔ X ≡ ∅ ∨ ∀ x, x ∈ X → f x ≡ ∅. Proof. setoid_rewrite elem_of_equiv_empty; setoid_rewrite elem_of_bind. naive_solver. Qed. End collection_monad_base. (** * Tactics *) (** Given a hypothesis [H : _ ∈ _], the tactic [destruct_elem_of H] will recursively split [H] for [(∪)], [(∩)], [(∖)], [map], [∅], [{[_]}]. *) Tactic Notation "decompose_elem_of" hyp(H) := let rec go H := lazymatch type of H with | _ ∈ ∅ => apply elem_of_empty in H; destruct H | ?x ∈ {[ ?y ]} => apply elem_of_singleton in H; try first [subst y | subst x] | ?x ∉ {[ ?y ]} => apply not_elem_of_singleton in H | _ ∈ _ ∪ _ => apply elem_of_union in H; destruct H as [H|H]; [go H|go H] | _ ∉ _ ∪ _ => let H1 := fresh H in let H2 := fresh H in apply not_elem_of_union in H; destruct H as [H1 H2]; go H1; go H2 | _ ∈ _ ∩ _ => let H1 := fresh H in let H2 := fresh H in apply elem_of_intersection in H; destruct H as [H1 H2]; go H1; go H2 | _ ∈ _ ∖ _ => let H1 := fresh H in let H2 := fresh H in apply elem_of_difference in H; destruct H as [H1 H2]; go H1; go H2 | ?x ∈ _ <$> _ => apply elem_of_fmap in H; destruct H as [? [? H]]; try (subst x); go H | _ ∈ _ ≫= _ => let H1 := fresh H in let H2 := fresh H in apply elem_of_bind in H; destruct H as [? [H1 H2]]; go H1; go H2 | ?x ∈ mret ?y => apply elem_of_ret in H; try first [subst y | subst x] | _ ∈ mjoin _ ≫= _ => let H1 := fresh H in let H2 := fresh H in apply elem_of_join in H; destruct H as [? [H1 H2]]; go H1; go H2 | _ ∈ guard _; _ => let H1 := fresh H in let H2 := fresh H in apply elem_of_guard in H; destruct H as [H1 H2]; go H2 | _ ∈ of_option _ => apply elem_of_of_option in H | _ ∈ of_list _ => apply elem_of_of_list in H | _ => idtac end in go H. Tactic Notation "decompose_elem_of" := repeat_on_hyps (fun H => decompose_elem_of H). Ltac decompose_empty := repeat match goal with | H : ∅ ≡ ∅ |- _ => clear H | H : ∅ = ∅ |- _ => clear H | H : ∅ ≡ _ |- _ => symmetry in H | H : ∅ = _ |- _ => symmetry in H | H : _ ∪ _ ≡ ∅ |- _ => apply empty_union in H; destruct H | H : _ ∪ _ ≢ ∅ |- _ => apply non_empty_union in H; destruct H | H : {[ _ ]} ≡ ∅ |- _ => destruct (non_empty_singleton _ H) | H : _ ∪ _ = ∅ |- _ => apply empty_union_L in H; destruct H | H : _ ∪ _ ≠ ∅ |- _ => apply non_empty_union_L in H; destruct H | H : {[ _ ]} = ∅ |- _ => destruct (non_empty_singleton_L _ H) | H : guard _ ; _ ≡ ∅ |- _ => apply guard_empty in H; destruct H end. (** The first pass of our collection tactic consists of eliminating all occurrences of [(∪)], [(∩)], [(∖)], [(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)], by rewriting these into logically equivalent propositions. For example we rewrite [A → x ∈ X ∪ ∅] into [A → x ∈ X ∨ False]. *) Ltac unfold_elem_of := repeat_on_hyps (fun H => repeat match type of H with | context [ _ ⊆ _ ] => setoid_rewrite elem_of_subseteq in H | context [ _ ⊂ _ ] => setoid_rewrite subset_spec in H | context [ _ ≡ ∅ ] => setoid_rewrite elem_of_equiv_empty in H | context [ _ ≡ _ ] => setoid_rewrite elem_of_equiv_alt in H | context [ _ = ∅ ] => setoid_rewrite elem_of_equiv_empty_L in H | context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L in H | context [ _ ∈ ∅ ] => setoid_rewrite elem_of_empty in H | context [ _ ∈ {[ _ ]} ] => setoid_rewrite elem_of_singleton in H | context [ _ ∈ _ ∪ _ ] => setoid_rewrite elem_of_union in H | context [ _ ∈ _ ∩ _ ] => setoid_rewrite elem_of_intersection in H | context [ _ ∈ _ ∖ _ ] => setoid_rewrite elem_of_difference in H | context [ _ ∈ _ <$> _ ] => setoid_rewrite elem_of_fmap in H | context [ _ ∈ mret _ ] => setoid_rewrite elem_of_ret in H | context [ _ ∈ _ ≫= _ ] => setoid_rewrite elem_of_bind in H | context [ _ ∈ mjoin _ ] => setoid_rewrite elem_of_join in H | context [ _ ∈ guard _; _ ] => setoid_rewrite elem_of_guard in H | context [ _ ∈ of_option _ ] => setoid_rewrite elem_of_of_option in H | context [ _ ∈ of_list _ ] => setoid_rewrite elem_of_of_list in H end); repeat match goal with | |- context [ _ ⊆ _ ] => setoid_rewrite elem_of_subseteq | |- context [ _ ⊂ _ ] => setoid_rewrite subset_spec | |- context [ _ ≡ ∅ ] => setoid_rewrite elem_of_equiv_empty | |- context [ _ ≡ _ ] => setoid_rewrite elem_of_equiv_alt | |- context [ _ = ∅ ] => setoid_rewrite elem_of_equiv_empty_L | |- context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L | |- context [ _ ∈ ∅ ] => setoid_rewrite elem_of_empty | |- context [ _ ∈ {[ _ ]} ] => setoid_rewrite elem_of_singleton | |- context [ _ ∈ _ ∪ _ ] => setoid_rewrite elem_of_union | |- context [ _ ∈ _ ∩ _ ] => setoid_rewrite elem_of_intersection | |- context [ _ ∈ _ ∖ _ ] => setoid_rewrite elem_of_difference | |- context [ _ ∈ _ <$> _ ] => setoid_rewrite elem_of_fmap | |- context [ _ ∈ mret _ ] => setoid_rewrite elem_of_ret | |- context [ _ ∈ _ ≫= _ ] => setoid_rewrite elem_of_bind | |- context [ _ ∈ mjoin _ ] => setoid_rewrite elem_of_join | |- context [ _ ∈ guard _; _ ] => setoid_rewrite elem_of_guard | |- context [ _ ∈ of_option _ ] => setoid_rewrite elem_of_of_option | |- context [ _ ∈ of_list _ ] => setoid_rewrite elem_of_of_list end. (** The tactic [solve_elem_of tac] composes the above tactic with [intuition]. For goals that do not involve [≡], [⊆], [map], or quantifiers this tactic is generally powerful enough. This tactic either fails or proves the goal. *) Tactic Notation "solve_elem_of" tactic3(tac) := setoid_subst; decompose_empty; unfold_elem_of; solve [intuition (simplify_equality; tac)]. Tactic Notation "solve_elem_of" := solve_elem_of auto. (** For goals with quantifiers we could use the above tactic but with [firstorder] instead of [intuition] as finishing tactic. However, [firstorder] fails or loops on very small goals generated by [solve_elem_of] already. We use the [naive_solver] tactic as a substitute. This tactic either fails or proves the goal. *) Tactic Notation "esolve_elem_of" tactic3(tac) := setoid_subst; decompose_empty; unfold_elem_of; naive_solver tac. Tactic Notation "esolve_elem_of" := esolve_elem_of eauto. (** * More theorems *) Section collection. Context `{Collection A C}. Global Instance: Lattice C. Proof. split. apply _. firstorder auto. solve_elem_of. Qed. Global Instance difference_proper : Proper ((≡) ==> (≡) ==> (≡)) (∖). Proof. intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x. by rewrite !elem_of_difference, HX, HY. Qed. Lemma intersection_singletons x : {[x]} ∩ {[x]} ≡ {[x]}. Proof. esolve_elem_of. Qed. Lemma difference_twice X Y : (X ∖ Y) ∖ Y ≡ X ∖ Y. Proof. esolve_elem_of. Qed. Lemma subseteq_empty_difference X Y : X ⊆ Y → X ∖ Y ≡ ∅. Proof. esolve_elem_of. Qed. Lemma difference_diag X : X ∖ X ≡ ∅. Proof. esolve_elem_of. Qed. Lemma difference_union_distr_l X Y Z : (X ∪ Y) ∖ Z ≡ X ∖ Z ∪ Y ∖ Z. Proof. esolve_elem_of. Qed. Lemma difference_union_distr_r X Y Z : Z ∖ (X ∪ Y) ≡ (Z ∖ X) ∩ (Z ∖ Y). Proof. esolve_elem_of. Qed. Lemma difference_intersection_distr_l X Y Z : (X ∩ Y) ∖ Z ≡ X ∖ Z ∩ Y ∖ Z. Proof. esolve_elem_of. Qed. Section leibniz. Context `{!LeibnizEquiv C}. Lemma intersection_singletons_L x : {[x]} ∩ {[x]} = {[x]}. Proof. unfold_leibniz. apply intersection_singletons. Qed. Lemma difference_twice_L X Y : (X ∖ Y) ∖ Y = X ∖ Y. Proof. unfold_leibniz. apply difference_twice. Qed. Lemma subseteq_empty_difference_L X Y : X ⊆ Y → X ∖ Y = ∅. Proof. unfold_leibniz. apply subseteq_empty_difference. Qed. Lemma difference_diag_L X : X ∖ X = ∅. Proof. unfold_leibniz. apply difference_diag. Qed. Lemma difference_union_distr_l_L X Y Z : (X ∪ Y) ∖ Z = X ∖ Z ∪ Y ∖ Z. Proof. unfold_leibniz. apply difference_union_distr_l. Qed. Lemma difference_union_distr_r_L X Y Z : Z ∖ (X ∪ Y) = (Z ∖ X) ∩ (Z ∖ Y). Proof. unfold_leibniz. apply difference_union_distr_r. Qed. Lemma difference_intersection_distr_l_L X Y Z : (X ∩ Y) ∖ Z = X ∖ Z ∩ Y ∖ Z. Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed. End leibniz. Section dec. Context `{∀ (x : A) (X : C), Decision (x ∈ X)}. Lemma not_elem_of_intersection x X Y : x ∉ X ∩ Y ↔ x ∉ X ∨ x ∉ Y. Proof. rewrite elem_of_intersection. destruct (decide (x ∈ X)); tauto. Qed. Lemma not_elem_of_difference x X Y : x ∉ X ∖ Y ↔ x ∉ X ∨ x ∈ Y. Proof. rewrite elem_of_difference. destruct (decide (x ∈ Y)); tauto. Qed. Lemma union_difference X Y : X ⊆ Y → Y ≡ X ∪ Y ∖ X. Proof. split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition]. destruct (decide (x ∈ X)); intuition. Qed. Lemma non_empty_difference X Y : X ⊂ Y → Y ∖ X ≢ ∅. Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x. destruct (decide (x ∈ X)); esolve_elem_of. Qed. Lemma empty_difference_subseteq X Y : X ∖ Y ≡ ∅ → X ⊆ Y. Proof. intros ? x ?; apply dec_stable; esolve_elem_of. Qed. Context `{!LeibnizEquiv C}. Lemma union_difference_L X Y : X ⊆ Y → Y = X ∪ Y ∖ X. Proof. unfold_leibniz. apply union_difference. Qed. Lemma non_empty_difference_L X Y : X ⊂ Y → Y ∖ X ≠ ∅. Proof. unfold_leibniz. apply non_empty_difference. Qed. Lemma empty_difference_subseteq_L X Y : X ∖ Y = ∅ → X ⊆ Y. Proof. unfold_leibniz. apply empty_difference_subseteq. Qed. End dec. End collection. Section collection_ops. Context `{CollectionOps A C}. Lemma elem_of_intersection_with_list (f : A → A → option A) Xs Y x : x ∈ intersection_with_list f Y Xs ↔ ∃ xs y, Forall2 (∈) xs Xs ∧ y ∈ Y ∧ foldr (λ x, (≫= f x)) (Some y) xs = Some x. Proof. split. * revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|]. rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?). destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial. eexists (x1 :: xs), y. intuition (simplify_option_equality; auto). * intros (xs & y & Hxs & ? & Hx). revert x Hx. induction Hxs; intros; simplify_option_equality; [done |]. rewrite elem_of_intersection_with. naive_solver. Qed. Lemma intersection_with_list_ind (P Q : A → Prop) f Xs Y : (∀ y, y ∈ Y → P y) → Forall (λ X, ∀ x, x ∈ X → Q x) Xs → (∀ x y z, Q x → P y → f x y = Some z → P z) → ∀ x, x ∈ intersection_with_list f Y Xs → P x. Proof. intros HY HXs Hf. induction Xs; simplify_option_equality; [done |]. intros x Hx. rewrite elem_of_intersection_with in Hx. decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto. Qed. End collection_ops. (** * Sets without duplicates up to an equivalence *) Section NoDup. Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}. Definition elem_of_upto (x : A) (X : B) := ∃ y, y ∈ X ∧ R x y. Definition set_NoDup (X : B) := ∀ x y, x ∈ X → y ∈ X → R x y → x = y. Global Instance: Proper ((≡) ==> iff) (elem_of_upto x). Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed. Global Instance: Proper (R ==> (≡) ==> iff) elem_of_upto. Proof. intros ?? E1 ?? E2. split; intros [z [??]]; exists z. * rewrite <-E1, <-E2; intuition. * rewrite E1, E2; intuition. Qed. Global Instance: Proper ((≡) ==> iff) set_NoDup. Proof. firstorder. Qed. Lemma elem_of_upto_elem_of x X : x ∈ X → elem_of_upto x X. Proof. unfold elem_of_upto. esolve_elem_of. Qed. Lemma elem_of_upto_empty x : ¬elem_of_upto x ∅. Proof. unfold elem_of_upto. esolve_elem_of. Qed. Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]} ↔ R x y. Proof. unfold elem_of_upto. esolve_elem_of. Qed. Lemma elem_of_upto_union X Y x : elem_of_upto x (X ∪ Y) ↔ elem_of_upto x X ∨ elem_of_upto x Y. Proof. unfold elem_of_upto. esolve_elem_of. Qed. Lemma not_elem_of_upto x X : ¬elem_of_upto x X → ∀ y, y ∈ X → ¬R x y. Proof. unfold elem_of_upto. esolve_elem_of. Qed. Lemma set_NoDup_empty: set_NoDup ∅. Proof. unfold set_NoDup. solve_elem_of. Qed. Lemma set_NoDup_add x X : ¬elem_of_upto x X → set_NoDup X → set_NoDup ({[ x ]} ∪ X). Proof. unfold set_NoDup, elem_of_upto. esolve_elem_of. Qed. Lemma set_NoDup_inv_add x X : x ∉ X → set_NoDup ({[ x ]} ∪ X) → ¬elem_of_upto x X. Proof. intros Hin Hnodup [y [??]]. rewrite (Hnodup x y) in Hin; solve_elem_of. Qed. Lemma set_NoDup_inv_union_l X Y : set_NoDup (X ∪ Y) → set_NoDup X. Proof. unfold set_NoDup. solve_elem_of. Qed. Lemma set_NoDup_inv_union_r X Y : set_NoDup (X ∪ Y) → set_NoDup Y. Proof. unfold set_NoDup. solve_elem_of. Qed. End NoDup. (** * Quantifiers *) Section quantifiers. Context `{SimpleCollection A B} (P : A → Prop). Definition set_Forall X := ∀ x, x ∈ X → P x. Definition set_Exists X := ∃ x, x ∈ X ∧ P x. Lemma set_Forall_empty : set_Forall ∅. Proof. unfold set_Forall. solve_elem_of. Qed. Lemma set_Forall_singleton x : set_Forall {[ x ]} ↔ P x. Proof. unfold set_Forall. solve_elem_of. Qed. Lemma set_Forall_union X Y : set_Forall X → set_Forall Y → set_Forall (X ∪ Y). Proof. unfold set_Forall. solve_elem_of. Qed. Lemma set_Forall_union_inv_1 X Y : set_Forall (X ∪ Y) → set_Forall X. Proof. unfold set_Forall. solve_elem_of. Qed. Lemma set_Forall_union_inv_2 X Y : set_Forall (X ∪ Y) → set_Forall Y. Proof. unfold set_Forall. solve_elem_of. Qed. Lemma set_Exists_empty : ¬set_Exists ∅. Proof. unfold set_Exists. esolve_elem_of. Qed. Lemma set_Exists_singleton x : set_Exists {[ x ]} ↔ P x. Proof. unfold set_Exists. esolve_elem_of. Qed. Lemma set_Exists_union_1 X Y : set_Exists X → set_Exists (X ∪ Y). Proof. unfold set_Exists. esolve_elem_of. Qed. Lemma set_Exists_union_2 X Y : set_Exists Y → set_Exists (X ∪ Y). Proof. unfold set_Exists. esolve_elem_of. Qed. Lemma set_Exists_union_inv X Y : set_Exists (X ∪ Y) → set_Exists X ∨ set_Exists Y. Proof. unfold set_Exists. esolve_elem_of. Qed. End quantifiers. Section more_quantifiers. Context `{SimpleCollection A B}. Lemma set_Forall_weaken (P Q : A → Prop) (Hweaken : ∀ x, P x → Q x) X : set_Forall P X → set_Forall Q X. Proof. unfold set_Forall. naive_solver. Qed. Lemma set_Exists_weaken (P Q : A → Prop) (Hweaken : ∀ x, P x → Q x) X : set_Exists P X → set_Exists Q X. Proof. unfold set_Exists. naive_solver. Qed. End more_quantifiers. (** * Fresh elements *) (** We collect some properties on the [fresh] operation. In particular we generalize [fresh] to generate lists of fresh elements. *) Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C} (n : nat) (X : C) : list A := match n with | 0 => [] | S n => let x := fresh X in x :: fresh_list n ({[ x ]} ∪ X) end. Inductive Forall_fresh `{ElemOf A C} (X : C) : list A → Prop := | Forall_fresh_nil : Forall_fresh X [] | Forall_fresh_cons x xs : x ∉ xs → x ∉ X → Forall_fresh X xs → Forall_fresh X (x :: xs). Section fresh. Context `{FreshSpec A C}. Global Instance fresh_proper: Proper ((≡) ==> (=)) fresh. Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed. Global Instance fresh_list_proper: Proper ((=) ==> (≡) ==> (=)) fresh_list. Proof. intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal'; [by rewrite E|]. apply IH. by rewrite E. Qed. Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs → NoDup xs. Proof. induction 1; by constructor. Qed. Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs → x ∈ xs → x ∉ X. Proof. intros HX; revert x; rewrite <-Forall_forall. by induction HX; constructor. Qed. Lemma Forall_fresh_alt X xs : Forall_fresh X xs ↔ NoDup xs ∧ ∀ x, x ∈ xs → x ∉ X. Proof. split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of. rewrite <-Forall_forall. intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto. Qed. Lemma Forall_fresh_subseteq X Y xs : Forall_fresh X xs → Y ⊆ X → Forall_fresh Y xs. Proof. rewrite !Forall_fresh_alt; esolve_elem_of. Qed. Lemma fresh_list_length n X : length (fresh_list n X) = n. Proof. revert X. induction n; simpl; auto. Qed. Lemma fresh_list_is_fresh n X x : x ∈ fresh_list n X → x ∉ X. Proof. revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|]. rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|]. apply IH in Hin; solve_elem_of. Qed. Lemma NoDup_fresh_list n X : NoDup (fresh_list n X). Proof. revert X. induction n; simpl; constructor; auto. intros Hin; apply fresh_list_is_fresh in Hin; solve_elem_of. Qed. Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X). Proof. rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh. Qed. End fresh. (** * Properties of implementations of collections that form a monad *) Section collection_monad. Context `{CollectionMonad M}. Global Instance collection_fmap_proper {A B} : Proper (pointwise_relation _ (=) ==> (≡) ==> (≡)) (@fmap M _ A B). Proof. intros f g ? X Y [??]; split; esolve_elem_of. Qed. Global Instance collection_bind_proper {A B} : Proper (((=) ==> (≡)) ==> (≡) ==> (≡)) (@mbind M _ A B). Proof. unfold respectful; intros f g Hfg X Y [??]; split; esolve_elem_of. Qed. Global Instance collection_join_proper {A} : Proper ((≡) ==> (≡)) (@mjoin M _ A). Proof. intros X Y [??]; split; esolve_elem_of. Qed. Lemma collection_bind_singleton {A B} (f : A → M B) x : {[ x ]} ≫= f ≡ f x. Proof. esolve_elem_of. Qed. Lemma collection_guard_True {A} `{Decision P} (X : M A) : P → guard P; X ≡ X. Proof. esolve_elem_of. Qed. Lemma collection_fmap_compose {A B C} (f : A → B) (g : B → C) X : g ∘ f <$> X ≡ g <$> (f <$> X). Proof. esolve_elem_of. Qed. Lemma elem_of_fmap_1 {A B} (f : A → B) (X : M A) (y : B) : y ∈ f <$> X → ∃ x, y = f x ∧ x ∈ X. Proof. esolve_elem_of. Qed. Lemma elem_of_fmap_2 {A B} (f : A → B) (X : M A) (x : A) : x ∈ X → f x ∈ f <$> X. Proof. esolve_elem_of. Qed. Lemma elem_of_fmap_2_alt {A B} (f : A → B) (X : M A) (x : A) (y : B) : x ∈ X → y = f x → y ∈ f <$> X. Proof. esolve_elem_of. Qed. Lemma elem_of_mapM {A B} (f : A → M B) l k : l ∈ mapM f k ↔ Forall2 (λ x y, x ∈ f y) l k. Proof. split. * revert l. induction k; esolve_elem_of. * induction 1; esolve_elem_of. Qed. Lemma collection_mapM_length {A B} (f : A → M B) l k : l ∈ mapM f k → length l = length k. Proof. revert l; induction k; esolve_elem_of. Qed. Lemma elem_of_mapM_fmap {A B} (f : A → B) (g : B → M A) l k : Forall (λ x, ∀ y, y ∈ g x → f y = x) l → k ∈ mapM g l → fmap f k = l. Proof. intros Hl. revert k. induction Hl; simpl; intros; decompose_elem_of; f_equal'; auto. Qed. Lemma elem_of_mapM_Forall {A B} (f : A → M B) (P : B → Prop) l k : l ∈ mapM f k → Forall (λ x, ∀ y, y ∈ f x → P y) k → Forall P l. Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed. Lemma elem_of_mapM_Forall2_l {A B C} (f : A → M B) (P: B → C → Prop) l1 l2 k : l1 ∈ mapM f k → Forall2 (λ x y, ∀ z, z ∈ f x → P z y) k l2 → Forall2 P l1 l2. Proof. rewrite elem_of_mapM. intros Hl1. revert l2. induction Hl1; inversion_clear 1; constructor; auto. Qed. End collection_monad.