diff --git a/theories/fin_map_dom.v b/theories/fin_map_dom.v index 5be84036978123a40071174129d392b25eda7022..19d72b45c91eaa048291265f92bb988c140dcba2 100644 --- a/theories/fin_map_dom.v +++ b/theories/fin_map_dom.v @@ -19,6 +19,13 @@ Class FinMapDom K M D `{FMap M, Section fin_map_dom. Context `{FinMapDom K M D}. +Lemma dom_map_filter {A} (P : K * A → Prop) `{!∀ x, Decision (P x)} (m : M A): + dom D (filter P m) ⊆ dom D m. +Proof. + intros ?. rewrite 2!elem_of_dom. + destruct 1 as [?[Eq _]%map_filter_lookup_Some]. by eexists. +Qed. + Lemma elem_of_dom_2 {A} (m : M A) i x : m !! i = Some x → i ∈ dom D m. Proof. rewrite elem_of_dom; eauto. Qed. Lemma not_elem_of_dom {A} (m : M A) i : i ∉ dom D m ↔ m !! i = None. diff --git a/theories/fin_maps.v b/theories/fin_maps.v index 19a816077ae775effe712b0a9ef6be6f13007735..79858b77b8a22a4a12abea1117e4e1fbe0580dc8 100644 --- a/theories/fin_maps.v +++ b/theories/fin_maps.v @@ -128,6 +128,9 @@ is unspecified. *) Definition map_fold `{FinMapToList K A M} {B} (f : K → A → B → B) (b : B) : M → B := foldr (curry f) b ∘ map_to_list. +Instance map_filter `{FinMap K M} {A} : Filter (K * A) (M A) := + λ P _, map_fold (λ k v m, if decide (P (k,v)) then <[k := v]>m else m) ∅. + (** * Theorems *) Section theorems. Context `{FinMap K M}. @@ -984,6 +987,67 @@ Proof. assert (m !! j = Some y) by (apply Hm; by right). naive_solver. Qed. +(** ** The filter operation *) +Section map_Filter. + Context {A} (P : K * A → Prop) `{!∀ x, Decision (P x)}. + + Lemma map_filter_lookup_Some: + ∀ m k v, filter P m !! k = Some v ↔ m !! k = Some v ∧ P (k,v). + Proof. + apply (map_fold_ind (λ m1 m2, ∀ k v, m1 !! k = Some v + ↔ m2 !! k = Some v ∧ P _)). + - setoid_rewrite lookup_empty. naive_solver. + - intros k v m m' Hm Eq k' v'. + case_match; case (decide (k' = k))as [->|?]. + + rewrite 2!lookup_insert. naive_solver. + + do 2 (rewrite lookup_insert_ne; [|auto]). by apply Eq. + + rewrite Eq, Hm, lookup_insert. split; [naive_solver|]. + destruct 1 as [Eq' ]. inversion Eq'. by subst. + + by rewrite lookup_insert_ne. + Qed. + + Lemma map_filter_lookup_None: + ∀ m k, + filter P m !! k = None ↔ m !! k = None ∨ ∀ v, m !! k = Some v → ¬ P (k,v). + Proof. + intros m k. rewrite eq_None_not_Some. unfold is_Some. + setoid_rewrite map_filter_lookup_Some. naive_solver. + Qed. + + Lemma map_filter_lookup_equiv m1 m2: + (∀ k v, P (k,v) → m1 !! k = Some v ↔ m2 !! k = Some v) + → filter P m1 = filter P m2. + Proof. + intros HP. apply map_eq. intros k. + destruct (filter P m2 !! k) as [v2|] eqn:Hv2; + [apply map_filter_lookup_Some in Hv2 as [Hv2 HP2]; + specialize (HP k v2 HP2) + |apply map_filter_lookup_None; right; intros v EqS ISP; + apply map_filter_lookup_None in Hv2 as [Hv2|Hv2]]. + - apply map_filter_lookup_Some. by rewrite HP. + - specialize (HP _ _ ISP). rewrite HP, Hv2 in EqS. naive_solver. + - apply (Hv2 v); [by apply HP|done]. + Qed. + + Lemma map_filter_lookup_insert m k v: + P (k,v) → <[k := v]> (filter P m) = filter P (<[k := v]> m). + Proof. + intros HP. apply map_eq. intros k'. + case (decide (k' = k)) as [->|?]; + [rewrite lookup_insert|rewrite lookup_insert_ne; [|auto]]. + - symmetry. apply map_filter_lookup_Some. by rewrite lookup_insert. + - destruct (filter P (<[k:=v]> m) !! k') eqn: Hk; revert Hk; + [rewrite map_filter_lookup_Some, lookup_insert_ne; [|by auto]; + by rewrite <-map_filter_lookup_Some + |rewrite map_filter_lookup_None, lookup_insert_ne; [|auto]; + by rewrite <-map_filter_lookup_None]. + Qed. + + Lemma map_filter_empty : filter P ∅ = ∅. + Proof. apply map_fold_empty. Qed. + +End map_Filter. + (** ** Properties of the [map_Forall] predicate *) Section map_Forall. Context {A} (P : K → A → Prop).