diff --git a/CHANGELOG.md b/CHANGELOG.md index e82c2830a212c7319b1ae96b3b477973e0123231..516c417e0685b50c84f93f8f63eebf310764ac48 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -14,6 +14,11 @@ API-breaking change is listed. - Add lemma about `zip_with`: `lookup_zip_with_None` and add lemmas for `zip`: `length_zip`, `zip_nil_inv`, `lookup_zip_Some`,`lookup_zip_None`. (by Kimaya Bedarkar) - Add `elem_of_seq` and `seq_nil`. (by Kimaya Bedarkar) +- Add lemmas `StronglySorted_app`, `StronglySorted_cons` and + `StronglySorted_app_2`. Rename lemmas + `elem_of_StronglySorted_app` → `StronglySorted_app_1_elem_of`, + `StronglySorted_app_inv_l` → `StronglySorted_app_1_l` + `StronglySorted_app_inv_r` → `StronglySorted_app_1_r`. (by Marijn van Wezel) The following `sed` script should perform most of the renaming (on macOS, replace `sed` by `gsed`, installed via e.g. `brew install gnu-sed`). @@ -22,6 +27,9 @@ Note that the script is not idempotent, do not run it twice. sed -i -E -f- $(find theories -name "*.v") <<EOF # length s/\bmap_filter_empty_iff\b/map_empty_filter/g +# StronglySorted +s/\belem_of_StronglySorted_app\b/StronglySorted_app_1_elem_of/g +s/\bStronglySorted_app_inv_(l|r)\b/StronglySorted_app_1_\1/g EOF ``` diff --git a/stdpp/sorting.v b/stdpp/sorting.v index c5d4d95f04b4139094ae2dd6ebf20ca64bf90d42..f1f787f2787a852fccb725f59e9e97aa7f242293 100644 --- a/stdpp/sorting.v +++ b/stdpp/sorting.v @@ -2,6 +2,7 @@ standard library, but without using the module system. *) From Coq Require Export Sorted. From stdpp Require Export orders list. +From stdpp Require Import sets. From stdpp Require Import options. Section merge_sort. @@ -48,25 +49,36 @@ Inductive TlRel {A} (R : relation A) (a : A) : list A → Prop := Section sorted. Context {A} (R : relation A). - Lemma elem_of_StronglySorted_app l1 l2 x1 x2 : - StronglySorted R (l1 ++ l2) → x1 ∈ l1 → x2 ∈ l2 → R x1 x2. + Lemma StronglySorted_cons l x : + StronglySorted R (x :: l) ↔ + Forall (R x) l ∧ StronglySorted R l. + Proof. split; [inv 1|constructor]; naive_solver. Qed. + + Lemma StronglySorted_app l1 l2 : + StronglySorted R (l1 ++ l2) ↔ + (∀ x1 x2, x1 ∈ l1 → x2 ∈ l2 → R x1 x2) ∧ + StronglySorted R l1 ∧ + StronglySorted R l2. Proof. - induction l1 as [|x1' l1 IH]; simpl; [by rewrite elem_of_nil|]. - intros [? Hall]%StronglySorted_inv [->|?]%elem_of_cons ?; [|by auto]. - rewrite Forall_app, !Forall_forall in Hall. naive_solver. + induction l1 as [|x1' l1 IH]; simpl. + - set_solver by eauto using SSorted_nil. + - rewrite !StronglySorted_cons, IH, !Forall_forall. set_solver. Qed. - Lemma StronglySorted_app_inv_l l1 l2 : + Lemma StronglySorted_app_2 l1 l2 : + (∀ x1 x2, x1 ∈ l1 → x2 ∈ l2 → R x1 x2) → + StronglySorted R l1 → + StronglySorted R l2 → + StronglySorted R (l1 ++ l2). + Proof. by rewrite StronglySorted_app. Qed. + Lemma StronglySorted_app_1_elem_of l1 l2 x1 x2 : + StronglySorted R (l1 ++ l2) → x1 ∈ l1 → x2 ∈ l2 → R x1 x2. + Proof. rewrite StronglySorted_app. naive_solver. Qed. + Lemma StronglySorted_app_1_l l1 l2 : StronglySorted R (l1 ++ l2) → StronglySorted R l1. - Proof. - induction l1 as [|x1' l1 IH]; simpl; - [|inv 1]; decompose_Forall; constructor; auto. - Qed. - Lemma StronglySorted_app_inv_r l1 l2 : + Proof. rewrite StronglySorted_app. naive_solver. Qed. + Lemma StronglySorted_app_1_r l1 l2 : StronglySorted R (l1 ++ l2) → StronglySorted R l2. - Proof. - induction l1 as [|x1' l1 IH]; simpl; - [|inv 1]; decompose_Forall; auto. - Qed. + Proof. rewrite StronglySorted_app. naive_solver. Qed. Lemma Sorted_StronglySorted `{!Transitive R} l : Sorted R l → StronglySorted R l.