Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • iris/stdpp
  • johannes/stdpp
  • proux1/stdpp
  • dosualdo/stdpp
  • benoit/coq-stdpp
  • dfrumin/coq-stdpp
  • haidang/stdpp
  • amintimany/coq-stdpp
  • swasey/coq-stdpp
  • simongregersen/stdpp
  • proux/stdpp
  • janno/coq-stdpp
  • amaurremi/coq-stdpp
  • msammler/stdpp
  • tchajed/stdpp
  • YaZko/stdpp
  • maximedenes/stdpp
  • jakobbotsch/stdpp
  • Blaisorblade/stdpp
  • simonspies/stdpp
  • lepigre/stdpp
  • devilhena/stdpp
  • simonfv/stdpp
  • jihgfee/stdpp
  • snyke7/stdpp
  • Armael/stdpp
  • gmalecha/stdpp
  • olaure01/stdpp
  • sarahzrf/stdpp
  • atrieu/stdpp
  • herbelin/stdpp
  • arthuraa/stdpp
  • lgaeher/stdpp
  • mrhaandi/stdpp
  • mattam82/stdpp
  • Quarkbeast/stdpp
  • aa755/stdpp
  • gmevel/stdpp
  • lstefane/stdpp
  • jung/stdpp
  • vsiles/stdpp
  • dlesbre/stdpp
  • bergwerf/stdpp
  • marijnvanwezel/stdpp
  • ivanbakel/stdpp
  • tperami/stdpp
  • adamAndMath/stdpp
  • Villetaneuse/stdpp
  • sanjit/stdpp
  • yiyunliu/stdpp
  • thomas-lamiaux/stdpp
  • Tragicus/stdpp
  • kbedarka/stdpp
53 results
Show changes
From Coq Require Export Permutation.
From stdpp Require Export numbers base option list_basics list_relations.
From stdpp Require Import options.
(** The monadic operations. *)
Global Instance list_ret: MRet list := λ A x, x :: @nil A.
Global Instance list_fmap : FMap list := λ A B f,
fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
Global Instance list_omap : OMap list := λ A B f,
fix go (l : list A) :=
match l with
| [] => []
| x :: l => match f x with Some y => y :: go l | None => go l end
end.
Global Instance list_bind : MBind list := λ A B f,
fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
Global Instance list_join: MJoin list :=
fix go A (ls : list (list A)) : list A :=
match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
Definition mapM `{MBind M, MRet M} {A B} (f : A M B) : list A M (list B) :=
fix go l :=
match l with [] => mret [] | x :: l => y f x; k go l; mret (y :: k) end.
Global Instance: Params (@mapM) 5 := {}.
(** We define stronger variants of the map function that allow the mapped
function to use the index of the elements. *)
Fixpoint imap {A B} (f : nat A B) (l : list A) : list B :=
match l with
| [] => []
| x :: l => f 0 x :: imap (f S) l
end.
Global Instance: Params (@imap) 2 := {}.
Definition zipped_map {A B} (f : list A list A A B) :
list A list A list B := fix go l k :=
match k with
| [] => []
| x :: k => f l k x :: go (x :: l) k
end.
Global Instance: Params (@zipped_map) 2 := {}.
Fixpoint imap2 {A B C} (f : nat A B C) (l : list A) (k : list B) : list C :=
match l, k with
| [], _ | _, [] => []
| x :: l, y :: k => f 0 x y :: imap2 (f S) l k
end.
Global Instance: Params (@imap2) 3 := {}.
Inductive zipped_Forall {A} (P : list A list A A Prop) :
list A list A Prop :=
| zipped_Forall_nil l : zipped_Forall P l []
| zipped_Forall_cons l k x :
P l k x zipped_Forall P (x :: l) k zipped_Forall P l (x :: k).
Global Arguments zipped_Forall_nil {_ _} _ : assert.
Global Arguments zipped_Forall_cons {_ _} _ _ _ _ _ : assert.
(** The Cartesian product on lists satisfies (lemma [elem_of_list_cprod]):
x ∈ cprod l k ↔ x.1 ∈ l ∧ x.2 ∈ k
There are little meaningful things to say about the order of the elements in
[cprod] (so there are no lemmas for that). It thus only makes sense to use
[cprod] when treating the lists as a set-like structure (i.e., up to duplicates
and permutations). *)
Global Instance list_cprod {A B} : CProd (list A) (list B) (list (A * B)) :=
λ l k, x l; (x,.) <$> k.
(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
match l with
| [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::.) <$> interleave x l)
end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
match l with [] => [[]] | x :: l => permutations l ≫= interleave x end.
Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
(** The Cartesian product *)
(** Correspondence to [list_prod] from the stdlib, a version that does not use
the [CProd] class for the interface, nor the monad classes for the definition *)
Lemma list_cprod_list_prod {B} l (k : list B) : cprod l k = list_prod l k.
Proof. unfold cprod, list_cprod. induction l; f_equal/=; auto. Qed.
Lemma elem_of_list_cprod {B} l (k : list B) (x : A * B) :
x cprod l k x.1 l x.2 k.
Proof.
rewrite list_cprod_list_prod, !elem_of_list_In.
destruct x. apply in_prod_iff.
Qed.
End general_properties.
(** * Properties of the monadic operations *)
Lemma list_fmap_id {A} (l : list A) : id <$> l = l.
Proof. induction l; f_equal/=; auto. Qed.
Global Instance list_fmap_proper `{!Equiv A, !Equiv B} :
Proper ((() ==> ()) ==> (≡@{list A}) ==> (≡@{list B})) fmap.
Proof. induction 2; csimpl; constructor; auto. Qed.
Section fmap.
Context {A B : Type} (f : A B).
Implicit Types l : list A.
Lemma list_fmap_compose {C} (g : B C) l : g f <$> l = g <$> (f <$> l).
Proof. induction l; f_equal/=; auto. Qed.
Lemma list_fmap_inj_1 f' l x :
f <$> l = f' <$> l x l f x = f' x.
Proof. intros Hf Hin. induction Hin; naive_solver. Qed.
Definition fmap_nil : f <$> [] = [] := eq_refl.
Definition fmap_cons x l : f <$> x :: l = f x :: (f <$> l) := eq_refl.
Lemma list_fmap_singleton x : f <$> [x] = [f x].
Proof. reflexivity. Qed.
Lemma fmap_app l1 l2 : f <$> l1 ++ l2 = (f <$> l1) ++ (f <$> l2).
Proof. by induction l1; f_equal/=. Qed.
Lemma fmap_snoc l x : f <$> l ++ [x] = (f <$> l) ++ [f x].
Proof. rewrite fmap_app, list_fmap_singleton. done. Qed.
Lemma fmap_nil_inv k : f <$> k = [] k = [].
Proof. by destruct k. Qed.
Lemma fmap_cons_inv y l k :
f <$> l = y :: k x l', y = f x k = f <$> l' l = x :: l'.
Proof. intros. destruct l; simplify_eq/=; eauto. Qed.
Lemma fmap_app_inv l k1 k2 :
f <$> l = k1 ++ k2 l1 l2, k1 = f <$> l1 k2 = f <$> l2 l = l1 ++ l2.
Proof.
revert l. induction k1 as [|y k1 IH]; simpl; [intros l ?; by eexists [],l|].
intros [|x l] ?; simplify_eq/=.
destruct (IH l) as (l1&l2&->&->&->); [done|]. by exists (x :: l1), l2.
Qed.
Lemma fmap_option_list mx :
f <$> (option_list mx) = option_list (f <$> mx).
Proof. by destruct mx. Qed.
Lemma list_fmap_alt l :
f <$> l = omap (λ x, Some (f x)) l.
Proof. induction l; simplify_eq/=; done. Qed.
Lemma length_fmap l : length (f <$> l) = length l.
Proof. by induction l; f_equal/=. Qed.
Lemma fmap_reverse l : f <$> reverse l = reverse (f <$> l).
Proof.
induction l as [|?? IH]; csimpl; by rewrite ?reverse_cons, ?fmap_app, ?IH.
Qed.
Lemma fmap_tail l : f <$> tail l = tail (f <$> l).
Proof. by destruct l. Qed.
Lemma fmap_last l : last (f <$> l) = f <$> last l.
Proof. induction l as [|? []]; simpl; auto. Qed.
Lemma fmap_replicate n x : f <$> replicate n x = replicate n (f x).
Proof. by induction n; f_equal/=. Qed.
Lemma fmap_take n l : f <$> take n l = take n (f <$> l).
Proof. revert n. by induction l; intros [|?]; f_equal/=. Qed.
Lemma fmap_drop n l : f <$> drop n l = drop n (f <$> l).
Proof. revert n. by induction l; intros [|?]; f_equal/=. Qed.
Lemma const_fmap (l : list A) (y : B) :
( x, f x = y) f <$> l = replicate (length l) y.
Proof. intros; induction l; f_equal/=; auto. Qed.
Lemma list_lookup_fmap l i : (f <$> l) !! i = f <$> (l !! i).
Proof. revert i. induction l; intros [|n]; by try revert n. Qed.
Lemma list_lookup_fmap_Some l i x :
(f <$> l) !! i = Some x y, l !! i = Some y x = f y.
Proof. by rewrite list_lookup_fmap, fmap_Some. Qed.
Lemma list_lookup_total_fmap `{!Inhabited A, !Inhabited B} l i :
i < length l (f <$> l) !!! i = f (l !!! i).
Proof.
intros [x Hx]%lookup_lt_is_Some_2.
by rewrite !list_lookup_total_alt, list_lookup_fmap, Hx.
Qed.
Lemma list_lookup_fmap_inv l i x :
(f <$> l) !! i = Some x y, x = f y l !! i = Some y.
Proof.
intros Hi. rewrite list_lookup_fmap in Hi.
destruct (l !! i) eqn:?; simplify_eq/=; eauto.
Qed.
Lemma list_fmap_insert l i x: f <$> <[i:=x]>l = <[i:=f x]>(f <$> l).
Proof. revert i. by induction l; intros [|i]; f_equal/=. Qed.
Lemma list_alter_fmap (g : A A) (h : B B) l i :
Forall (λ x, f (g x) = h (f x)) l f <$> alter g i l = alter h i (f <$> l).
Proof. intros Hl. revert i. by induction Hl; intros [|i]; f_equal/=. Qed.
Lemma list_fmap_delete l i : f <$> (delete i l) = delete i (f <$> l).
Proof.
revert i. induction l; intros i; destruct i; csimpl; eauto.
naive_solver congruence.
Qed.
Lemma elem_of_list_fmap_1 l x : x l f x f <$> l.
Proof. induction 1; csimpl; rewrite elem_of_cons; intuition. Qed.
Lemma elem_of_list_fmap_1_alt l x y : x l y = f x y f <$> l.
Proof. intros. subst. by apply elem_of_list_fmap_1. Qed.
Lemma elem_of_list_fmap_2 l x : x f <$> l y, x = f y y l.
Proof.
induction l as [|y l IH]; simpl; inv 1.
- exists y. split; [done | by left].
- destruct IH as [z [??]]; [done|]. exists z. split; [done | by right].
Qed.
Lemma elem_of_list_fmap l x : x f <$> l y, x = f y y l.
Proof.
naive_solver eauto using elem_of_list_fmap_1_alt, elem_of_list_fmap_2.
Qed.
Lemma elem_of_list_fmap_2_inj `{!Inj (=) (=) f} l x : f x f <$> l x l.
Proof.
intros (y, (E, I))%elem_of_list_fmap_2. by rewrite (inj f) in I.
Qed.
Lemma elem_of_list_fmap_inj `{!Inj (=) (=) f} l x : f x f <$> l x l.
Proof.
naive_solver eauto using elem_of_list_fmap_1, elem_of_list_fmap_2_inj.
Qed.
Lemma list_fmap_inj R1 R2 :
Inj R1 R2 f Inj (Forall2 R1) (Forall2 R2) (fmap f).
Proof.
intros ? l1. induction l1; intros [|??]; inv 1; constructor; auto.
Qed.
Global Instance list_fmap_eq_inj : Inj (=) (=) f Inj (=@{list A}) (=) (fmap f).
Proof.
intros ?%list_fmap_inj ?? ?%list_eq_Forall2%(inj _). by apply list_eq_Forall2.
Qed.
Global Instance list_fmap_equiv_inj `{!Equiv A, !Equiv B} :
Inj () () f Inj (≡@{list A}) () (fmap f).
Proof.
intros ?%list_fmap_inj ?? ?%list_equiv_Forall2%(inj _).
by apply list_equiv_Forall2.
Qed.
(** A version of [NoDup_fmap_2] that does not require [f] to be injective for
*all* inputs. *)
Lemma NoDup_fmap_2_strong l :
( x y, x l y l f x = f y x = y)
NoDup l
NoDup (f <$> l).
Proof.
intros Hinj. induction 1 as [|x l ?? IH]; simpl; constructor.
- intros [y [Hxy ?]]%elem_of_list_fmap.
apply Hinj in Hxy; [by subst|by constructor..].
- apply IH. clear- Hinj.
intros x' y Hx' Hy. apply Hinj; by constructor.
Qed.
Lemma NoDup_fmap_1 l : NoDup (f <$> l) NoDup l.
Proof.
induction l; simpl; inv 1; constructor; auto.
rewrite elem_of_list_fmap in *. naive_solver.
Qed.
Lemma NoDup_fmap_2 `{!Inj (=) (=) f} l : NoDup l NoDup (f <$> l).
Proof. apply NoDup_fmap_2_strong. intros ?? _ _. apply (inj f). Qed.
Lemma NoDup_fmap `{!Inj (=) (=) f} l : NoDup (f <$> l) NoDup l.
Proof. split; auto using NoDup_fmap_1, NoDup_fmap_2. Qed.
Global Instance fmap_sublist: Proper (sublist ==> sublist) (fmap f).
Proof. induction 1; simpl; econstructor; eauto. Qed.
Global Instance fmap_submseteq: Proper (submseteq ==> submseteq) (fmap f).
Proof. induction 1; simpl; econstructor; eauto. Qed.
Global Instance fmap_Permutation: Proper (() ==> ()) (fmap f).
Proof. induction 1; simpl; econstructor; eauto. Qed.
Lemma Forall_fmap_ext_1 (g : A B) (l : list A) :
Forall (λ x, f x = g x) l fmap f l = fmap g l.
Proof. by induction 1; f_equal/=. Qed.
Lemma Forall_fmap_ext (g : A B) (l : list A) :
Forall (λ x, f x = g x) l fmap f l = fmap g l.
Proof.
split; [auto using Forall_fmap_ext_1|].
induction l; simpl; constructor; simplify_eq; auto.
Qed.
Lemma Forall_fmap (P : B Prop) l : Forall P (f <$> l) Forall (P f) l.
Proof. split; induction l; inv 1; constructor; auto. Qed.
Lemma Exists_fmap (P : B Prop) l : Exists P (f <$> l) Exists (P f) l.
Proof. split; induction l; inv 1; constructor; by auto. Qed.
Lemma Forall2_fmap_l {C} (P : B C Prop) l k :
Forall2 P (f <$> l) k Forall2 (P f) l k.
Proof.
split; revert k; induction l; inv 1; constructor; auto.
Qed.
Lemma Forall2_fmap_r {C} (P : C B Prop) k l :
Forall2 P k (f <$> l) Forall2 (λ x, P x f) k l.
Proof.
split; revert k; induction l; inv 1; constructor; auto.
Qed.
Lemma Forall2_fmap_1 {C D} (g : C D) (P : B D Prop) l k :
Forall2 P (f <$> l) (g <$> k) Forall2 (λ x1 x2, P (f x1) (g x2)) l k.
Proof. revert k; induction l; intros [|??]; inv 1; auto. Qed.
Lemma Forall2_fmap_2 {C D} (g : C D) (P : B D Prop) l k :
Forall2 (λ x1 x2, P (f x1) (g x2)) l k Forall2 P (f <$> l) (g <$> k).
Proof. induction 1; csimpl; auto. Qed.
Lemma Forall2_fmap {C D} (g : C D) (P : B D Prop) l k :
Forall2 P (f <$> l) (g <$> k) Forall2 (λ x1 x2, P (f x1) (g x2)) l k.
Proof. split; auto using Forall2_fmap_1, Forall2_fmap_2. Qed.
Lemma list_fmap_bind {C} (g : B list C) l : (f <$> l) ≫= g = l ≫= g f.
Proof. by induction l; f_equal/=. Qed.
End fmap.
Section ext.
Context {A B : Type}.
Implicit Types l : list A.
Lemma list_fmap_ext (f g : A B) l :
( i x, l !! i = Some x f x = g x) f <$> l = g <$> l.
Proof.
intros Hfg. apply list_eq; intros i. rewrite !list_lookup_fmap.
destruct (l !! i) eqn:?; f_equal/=; eauto.
Qed.
Lemma list_fmap_equiv_ext `{!Equiv B} (f g : A B) l :
( i x, l !! i = Some x f x g x) f <$> l g <$> l.
Proof.
intros Hl. apply list_equiv_lookup; intros i. rewrite !list_lookup_fmap.
destruct (l !! i) eqn:?; simpl; constructor; eauto.
Qed.
End ext.
Lemma list_alter_fmap_mono {A} (f : A A) (g : A A) l i :
Forall (λ x, f (g x) = g (f x)) l f <$> alter g i l = alter g i (f <$> l).
Proof. auto using list_alter_fmap. Qed.
Lemma NoDup_fmap_fst {A B} (l : list (A * B)) :
( x y1 y2, (x,y1) l (x,y2) l y1 = y2) NoDup l NoDup (l.*1).
Proof.
intros Hunique. induction 1 as [|[x1 y1] l Hin Hnodup IH]; csimpl; constructor.
- rewrite elem_of_list_fmap.
intros [[x2 y2] [??]]; simpl in *; subst. destruct Hin.
rewrite (Hunique x2 y1 y2); rewrite ?elem_of_cons; auto.
- apply IH. intros. eapply Hunique; rewrite ?elem_of_cons; eauto.
Qed.
Global Instance list_omap_proper `{!Equiv A, !Equiv B} :
Proper ((() ==> ()) ==> (≡@{list A}) ==> (≡@{list B})) omap.
Proof.
intros f1 f2 Hf. induction 1 as [|x1 x2 l1 l2 Hx Hl]; csimpl; [constructor|].
destruct (Hf _ _ Hx); by repeat f_equiv.
Qed.
Section omap.
Context {A B : Type} (f : A option B).
Implicit Types l : list A.
Lemma list_fmap_omap {C} (g : B C) l :
g <$> omap f l = omap (λ x, g <$> (f x)) l.
Proof.
induction l as [|x y IH]; [done|]. csimpl.
destruct (f x); csimpl; [|done]. by f_equal.
Qed.
Lemma list_omap_ext {A'} (g : A' option B) l1 (l2 : list A') :
Forall2 (λ a b, f a = g b) l1 l2
omap f l1 = omap g l2.
Proof.
induction 1 as [|x y l l' Hfg ? IH]; [done|].
csimpl. rewrite Hfg. destruct (g y); [|done]. by f_equal.
Qed.
Lemma elem_of_list_omap l y : y omap f l x, x l f x = Some y.
Proof.
split.
- induction l as [|x l]; csimpl; repeat case_match;
repeat (setoid_rewrite elem_of_nil || setoid_rewrite elem_of_cons);
naive_solver.
- intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
simplify_eq; try constructor; auto.
Qed.
Global Instance omap_Permutation : Proper (() ==> ()) (omap f).
Proof. induction 1; simpl; repeat case_match; econstructor; eauto. Qed.
Lemma omap_app l1 l2 :
omap f (l1 ++ l2) = omap f l1 ++ omap f l2.
Proof. induction l1; csimpl; repeat case_match; naive_solver congruence. Qed.
Lemma omap_option_list mx :
omap f (option_list mx) = option_list (mx ≫= f).
Proof. by destruct mx. Qed.
End omap.
Global Instance list_bind_proper `{!Equiv A, !Equiv B} :
Proper ((() ==> ()) ==> (≡@{list A}) ==> (≡@{list B})) mbind.
Proof. induction 2; csimpl; constructor || f_equiv; auto. Qed.
Section bind.
Context {A B : Type} (f : A list B).
Lemma list_bind_ext (g : A list B) l1 l2 :
( x, f x = g x) l1 = l2 l1 ≫= f = l2 ≫= g.
Proof. intros ? <-. by induction l1; f_equal/=. Qed.
Lemma Forall_bind_ext (g : A list B) (l : list A) :
Forall (λ x, f x = g x) l l ≫= f = l ≫= g.
Proof. by induction 1; f_equal/=. Qed.
Global Instance bind_sublist: Proper (sublist ==> sublist) (mbind f).
Proof.
induction 1; simpl; auto;
[by apply sublist_app|by apply sublist_inserts_l].
Qed.
Global Instance bind_submseteq: Proper (submseteq ==> submseteq) (mbind f).
Proof.
induction 1; csimpl; auto.
- by apply submseteq_app.
- by rewrite !(assoc_L (++)), (comm (++) (f _)).
- by apply submseteq_inserts_l.
- etrans; eauto.
Qed.
Global Instance bind_Permutation: Proper (() ==> ()) (mbind f).
Proof.
induction 1; csimpl; auto.
- by f_equiv.
- by rewrite !(assoc_L (++)), (comm (++) (f _)).
- etrans; eauto.
Qed.
Lemma bind_cons x l : (x :: l) ≫= f = f x ++ l ≫= f.
Proof. done. Qed.
Lemma bind_singleton x : [x] ≫= f = f x.
Proof. csimpl. by rewrite (right_id_L _ (++)). Qed.
Lemma bind_app l1 l2 : (l1 ++ l2) ≫= f = (l1 ≫= f) ++ (l2 ≫= f).
Proof. by induction l1; csimpl; rewrite <-?(assoc_L (++)); f_equal. Qed.
Lemma elem_of_list_bind (x : B) (l : list A) :
x l ≫= f y, x f y y l.
Proof.
split.
- induction l as [|y l IH]; csimpl; [inv 1|].
rewrite elem_of_app. intros [?|?].
+ exists y. split; [done | by left].
+ destruct IH as [z [??]]; [done|]. exists z. split; [done | by right].
- intros [y [Hx Hy]]. induction Hy; csimpl; rewrite elem_of_app; intuition.
Qed.
Lemma Forall_bind (P : B Prop) l :
Forall P (l ≫= f) Forall (Forall P f) l.
Proof.
split.
- induction l; csimpl; rewrite ?Forall_app; constructor; csimpl; intuition.
- induction 1; csimpl; rewrite ?Forall_app; auto.
Qed.
Lemma Forall2_bind {C D} (g : C list D) (P : B D Prop) l1 l2 :
Forall2 (λ x1 x2, Forall2 P (f x1) (g x2)) l1 l2
Forall2 P (l1 ≫= f) (l2 ≫= g).
Proof. induction 1; csimpl; auto using Forall2_app. Qed.
Lemma NoDup_bind l :
( x1 x2 y, x1 l x2 l y f x1 y f x2 x1 = x2)
( x, x l NoDup (f x)) NoDup l NoDup (l ≫= f).
Proof.
intros Hinj Hf. induction 1 as [|x l ?? IH]; csimpl; [constructor|].
apply NoDup_app. split_and!.
- eauto 10 using elem_of_list_here.
- intros y ? (x'&?&?)%elem_of_list_bind.
destruct (Hinj x x' y); auto using elem_of_list_here, elem_of_list_further.
- eauto 10 using elem_of_list_further.
Qed.
End bind.
Global Instance list_join_proper `{!Equiv A} :
Proper (() ==> (≡@{list A})) mjoin.
Proof. induction 1; simpl; [constructor|solve_proper]. Qed.
Section ret_join.
Context {A : Type}.
Lemma list_join_bind (ls : list (list A)) : mjoin ls = ls ≫= id.
Proof. by induction ls; f_equal/=. Qed.
Global Instance join_Permutation : Proper ((@{list A}) ==> ()) mjoin.
Proof. intros ?? E. by rewrite !list_join_bind, E. Qed.
Lemma elem_of_list_ret (x y : A) : x @mret list _ A y x = y.
Proof. apply elem_of_list_singleton. Qed.
Lemma elem_of_list_join (x : A) (ls : list (list A)) :
x mjoin ls l : list A, x l l ls.
Proof. by rewrite list_join_bind, elem_of_list_bind. Qed.
Lemma join_nil (ls : list (list A)) : mjoin ls = [] Forall (.= []) ls.
Proof.
split; [|by induction 1 as [|[|??] ?]].
by induction ls as [|[|??] ?]; constructor; auto.
Qed.
Lemma join_nil_1 (ls : list (list A)) : mjoin ls = [] Forall (.= []) ls.
Proof. by rewrite join_nil. Qed.
Lemma join_nil_2 (ls : list (list A)) : Forall (.= []) ls mjoin ls = [].
Proof. by rewrite join_nil. Qed.
Lemma join_app (l1 l2 : list (list A)) :
mjoin (l1 ++ l2) = mjoin l1 ++ mjoin l2.
Proof.
induction l1 as [|x l1 IH]; simpl; [done|]. by rewrite <-(assoc_L _ _), IH.
Qed.
Lemma Forall_join (P : A Prop) (ls: list (list A)) :
Forall (Forall P) ls Forall P (mjoin ls).
Proof. induction 1; simpl; auto using Forall_app_2. Qed.
Lemma Forall2_join {B} (P : A B Prop) ls1 ls2 :
Forall2 (Forall2 P) ls1 ls2 Forall2 P (mjoin ls1) (mjoin ls2).
Proof. induction 1; simpl; auto using Forall2_app. Qed.
End ret_join.
Global Instance mapM_proper `{!Equiv A, !Equiv B} :
Proper ((() ==> ()) ==> (≡@{list A}) ==> (≡@{option (list B)})) mapM.
Proof.
induction 2; csimpl; repeat (f_equiv || constructor || intro || auto).
Qed.
Section mapM.
Context {A B : Type} (f : A option B).
Lemma mapM_ext (g : A option B) l : ( x, f x = g x) mapM f l = mapM g l.
Proof. intros Hfg. by induction l as [|?? IHl]; simpl; rewrite ?Hfg, ?IHl. Qed.
Lemma Forall2_mapM_ext (g : A option B) l k :
Forall2 (λ x y, f x = g y) l k mapM f l = mapM g k.
Proof. induction 1 as [|???? Hfg ? IH]; simpl; [done|]. by rewrite Hfg, IH. Qed.
Lemma Forall_mapM_ext (g : A option B) l :
Forall (λ x, f x = g x) l mapM f l = mapM g l.
Proof. induction 1 as [|?? Hfg ? IH]; simpl; [done|]. by rewrite Hfg, IH. Qed.
Lemma mapM_Some_1 l k : mapM f l = Some k Forall2 (λ x y, f x = Some y) l k.
Proof.
revert k. induction l as [|x l]; intros [|y k]; simpl; try done.
- destruct (f x); simpl; [|discriminate]. by destruct (mapM f l).
- destruct (f x) eqn:?; intros; simplify_option_eq; auto.
Qed.
Lemma mapM_Some_2 l k : Forall2 (λ x y, f x = Some y) l k mapM f l = Some k.
Proof.
induction 1 as [|???? Hf ? IH]; simpl; [done |].
rewrite Hf. simpl. by rewrite IH.
Qed.
Lemma mapM_Some l k : mapM f l = Some k Forall2 (λ x y, f x = Some y) l k.
Proof. split; auto using mapM_Some_1, mapM_Some_2. Qed.
Lemma length_mapM l k : mapM f l = Some k length l = length k.
Proof. intros. by eapply Forall2_length, mapM_Some_1. Qed.
Lemma mapM_None_1 l : mapM f l = None Exists (λ x, f x = None) l.
Proof.
induction l as [|x l IH]; simpl; [done|].
destruct (f x) eqn:?; simpl; eauto. by destruct (mapM f l); eauto.
Qed.
Lemma mapM_None_2 l : Exists (λ x, f x = None) l mapM f l = None.
Proof.
induction 1 as [x l Hx|x l ? IH]; simpl; [by rewrite Hx|].
by destruct (f x); simpl; rewrite ?IH.
Qed.
Lemma mapM_None l : mapM f l = None Exists (λ x, f x = None) l.
Proof. split; auto using mapM_None_1, mapM_None_2. Qed.
Lemma mapM_is_Some_1 l : is_Some (mapM f l) Forall (is_Some f) l.
Proof.
unfold compose. setoid_rewrite <-not_eq_None_Some.
rewrite mapM_None. apply (not_Exists_Forall _).
Qed.
Lemma mapM_is_Some_2 l : Forall (is_Some f) l is_Some (mapM f l).
Proof.
unfold compose. setoid_rewrite <-not_eq_None_Some.
rewrite mapM_None. apply (Forall_not_Exists _).
Qed.
Lemma mapM_is_Some l : is_Some (mapM f l) Forall (is_Some f) l.
Proof. split; auto using mapM_is_Some_1, mapM_is_Some_2. Qed.
Lemma mapM_fmap_Forall_Some (g : B A) (l : list B) :
Forall (λ x, f (g x) = Some x) l mapM f (g <$> l) = Some l.
Proof. by induction 1; simpl; simplify_option_eq. Qed.
Lemma mapM_fmap_Some (g : B A) (l : list B) :
( x, f (g x) = Some x) mapM f (g <$> l) = Some l.
Proof. intros. by apply mapM_fmap_Forall_Some, Forall_true. Qed.
Lemma mapM_fmap_Forall2_Some_inv (g : B A) (l : list A) (k : list B) :
mapM f l = Some k Forall2 (λ x y, f x = Some y g y = x) l k g <$> k = l.
Proof. induction 2; simplify_option_eq; naive_solver. Qed.
Lemma mapM_fmap_Some_inv (g : B A) (l : list A) (k : list B) :
mapM f l = Some k ( x y, f x = Some y g y = x) g <$> k = l.
Proof. eauto using mapM_fmap_Forall2_Some_inv, Forall2_true, length_mapM. Qed.
End mapM.
Lemma imap_const {A B} (f : A B) l : imap (const f) l = f <$> l.
Proof. induction l; f_equal/=; auto. Qed.
Global Instance imap_proper `{!Equiv A, !Equiv B} :
Proper (pointwise_relation _ (() ==> ()) ==> (≡@{list A}) ==> (≡@{list B}))
imap.
Proof.
intros f f' Hf l l' Hl. revert f f' Hf.
induction Hl as [|x1 x2 l1 l2 ?? IH]; intros f f' Hf; simpl; constructor.
- by apply Hf.
- apply IH. intros i y y' ?; simpl. by apply Hf.
Qed.
Section imap.
Context {A B : Type} (f : nat A B).
Lemma imap_ext g l :
( i x, l !! i = Some x f i x = g i x) imap f l = imap g l.
Proof. revert f g; induction l as [|x l IH]; intros; f_equal/=; eauto. Qed.
Lemma imap_nil : imap f [] = [].
Proof. done. Qed.
Lemma imap_app l1 l2 :
imap f (l1 ++ l2) = imap f l1 ++ imap (λ n, f (length l1 + n)) l2.
Proof.
revert f. induction l1 as [|x l1 IH]; intros f; f_equal/=.
by rewrite IH.
Qed.
Lemma imap_cons x l : imap f (x :: l) = f 0 x :: imap (f S) l.
Proof. done. Qed.
Lemma imap_fmap {C} (g : C A) l : imap f (g <$> l) = imap (λ n, f n g) l.
Proof. revert f. induction l; intros; f_equal/=; eauto. Qed.
Lemma fmap_imap {C} (g : B C) l : g <$> imap f l = imap (λ n, g f n) l.
Proof. revert f. induction l; intros; f_equal/=; eauto. Qed.
Lemma list_lookup_imap l i : imap f l !! i = f i <$> l !! i.
Proof.
revert f i. induction l as [|x l IH]; intros f [|i]; f_equal/=; auto.
by rewrite IH.
Qed.
Lemma list_lookup_imap_Some l i x :
imap f l !! i = Some x y, l !! i = Some y x = f i y.
Proof. by rewrite list_lookup_imap, fmap_Some. Qed.
Lemma list_lookup_total_imap `{!Inhabited A, !Inhabited B} l i :
i < length l imap f l !!! i = f i (l !!! i).
Proof.
intros [x Hx]%lookup_lt_is_Some_2.
by rewrite !list_lookup_total_alt, list_lookup_imap, Hx.
Qed.
Lemma length_imap l : length (imap f l) = length l.
Proof. revert f. induction l; simpl; eauto. Qed.
Lemma elem_of_lookup_imap_1 l x :
x imap f l i y, x = f i y l !! i = Some y.
Proof.
intros [i Hin]%elem_of_list_lookup. rewrite list_lookup_imap in Hin.
simplify_option_eq; naive_solver.
Qed.
Lemma elem_of_lookup_imap_2 l x i : l !! i = Some x f i x imap f l.
Proof.
intros Hl. rewrite elem_of_list_lookup.
exists i. by rewrite list_lookup_imap, Hl.
Qed.
Lemma elem_of_lookup_imap l x :
x imap f l i y, x = f i y l !! i = Some y.
Proof. naive_solver eauto using elem_of_lookup_imap_1, elem_of_lookup_imap_2. Qed.
End imap.
(** ** Properties of the [permutations] function *)
Section permutations.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l : list A.
Lemma interleave_cons x l : x :: l interleave x l.
Proof. destruct l; simpl; rewrite elem_of_cons; auto. Qed.
Lemma interleave_Permutation x l l' : l' interleave x l l' x :: l.
Proof.
revert l'. induction l as [|y l IH]; intros l'; simpl.
- rewrite elem_of_list_singleton. by intros ->.
- rewrite elem_of_cons, elem_of_list_fmap. intros [->|[? [-> H]]]; [done|].
rewrite (IH _ H). constructor.
Qed.
Lemma permutations_refl l : l permutations l.
Proof.
induction l; simpl; [by apply elem_of_list_singleton|].
apply elem_of_list_bind. eauto using interleave_cons.
Qed.
Lemma permutations_skip x l l' :
l permutations l' x :: l permutations (x :: l').
Proof. intro. apply elem_of_list_bind; eauto using interleave_cons. Qed.
Lemma permutations_swap x y l : y :: x :: l permutations (x :: y :: l).
Proof.
simpl. apply elem_of_list_bind. exists (y :: l). split; simpl.
- destruct l; csimpl; rewrite !elem_of_cons; auto.
- apply elem_of_list_bind. simpl.
eauto using interleave_cons, permutations_refl.
Qed.
Lemma permutations_nil l : l permutations [] l = [].
Proof. simpl. by rewrite elem_of_list_singleton. Qed.
Lemma interleave_interleave_toggle x1 x2 l1 l2 l3 :
l1 interleave x1 l2 l2 interleave x2 l3 l4,
l1 interleave x2 l4 l4 interleave x1 l3.
Proof.
revert l1 l2. induction l3 as [|y l3 IH]; intros l1 l2; simpl.
{ rewrite !elem_of_list_singleton. intros ? ->. exists [x1].
change (interleave x2 [x1]) with ([[x2; x1]] ++ [[x1; x2]]).
by rewrite (comm (++)), elem_of_list_singleton. }
rewrite elem_of_cons, elem_of_list_fmap.
intros Hl1 [? | [l2' [??]]]; simplify_eq/=.
- rewrite !elem_of_cons, elem_of_list_fmap in Hl1.
destruct Hl1 as [? | [? | [l4 [??]]]]; subst.
+ exists (x1 :: y :: l3). csimpl. rewrite !elem_of_cons. tauto.
+ exists (x1 :: y :: l3). csimpl. rewrite !elem_of_cons. tauto.
+ exists l4. simpl. rewrite elem_of_cons. auto using interleave_cons.
- rewrite elem_of_cons, elem_of_list_fmap in Hl1.
destruct Hl1 as [? | [l1' [??]]]; subst.
+ exists (x1 :: y :: l3). csimpl.
rewrite !elem_of_cons, !elem_of_list_fmap.
split; [| by auto]. right. right. exists (y :: l2').
rewrite elem_of_list_fmap. naive_solver.
+ destruct (IH l1' l2') as [l4 [??]]; auto. exists (y :: l4). simpl.
rewrite !elem_of_cons, !elem_of_list_fmap. naive_solver.
Qed.
Lemma permutations_interleave_toggle x l1 l2 l3 :
l1 permutations l2 l2 interleave x l3 l4,
l1 interleave x l4 l4 permutations l3.
Proof.
revert l1 l2. induction l3 as [|y l3 IH]; intros l1 l2; simpl.
{ rewrite elem_of_list_singleton. intros Hl1 ->. eexists [].
by rewrite elem_of_list_singleton. }
rewrite elem_of_cons, elem_of_list_fmap.
intros Hl1 [? | [l2' [? Hl2']]]; simplify_eq/=.
- rewrite elem_of_list_bind in Hl1.
destruct Hl1 as [l1' [??]]. by exists l1'.
- rewrite elem_of_list_bind in Hl1. setoid_rewrite elem_of_list_bind.
destruct Hl1 as [l1' [??]]. destruct (IH l1' l2') as (l1''&?&?); auto.
destruct (interleave_interleave_toggle y x l1 l1' l1'') as (?&?&?); eauto.
Qed.
Lemma permutations_trans l1 l2 l3 :
l1 permutations l2 l2 permutations l3 l1 permutations l3.
Proof.
revert l1 l2. induction l3 as [|x l3 IH]; intros l1 l2; simpl.
- rewrite !elem_of_list_singleton. intros Hl1 ->; simpl in *.
by rewrite elem_of_list_singleton in Hl1.
- rewrite !elem_of_list_bind. intros Hl1 [l2' [Hl2 Hl2']].
destruct (permutations_interleave_toggle x l1 l2 l2') as [? [??]]; eauto.
Qed.
Lemma permutations_Permutation l l' : l' permutations l l l'.
Proof.
split.
- revert l'. induction l; simpl; intros l''.
+ rewrite elem_of_list_singleton. by intros ->.
+ rewrite elem_of_list_bind. intros [l' [Hl'' ?]].
rewrite (interleave_Permutation _ _ _ Hl''). constructor; auto.
- induction 1; eauto using permutations_refl,
permutations_skip, permutations_swap, permutations_trans.
Qed.
End permutations.
(** ** Properties of the folding functions *)
(** Note that [foldr] has much better support, so when in doubt, it should be
preferred over [foldl]. *)
Definition foldr_app := @fold_right_app.
Lemma foldr_cons {A B} (f : B A A) (a : A) l x :
foldr f a (x :: l) = f x (foldr f a l).
Proof. done. Qed.
Lemma foldr_snoc {A B} (f : B A A) (a : A) l x :
foldr f a (l ++ [x]) = foldr f (f x a) l.
Proof. rewrite foldr_app. done. Qed.
Lemma foldr_fmap {A B C} (f : B A A) x (l : list C) g :
foldr f x (g <$> l) = foldr (λ b a, f (g b) a) x l.
Proof. induction l; f_equal/=; auto. Qed.
Lemma foldr_ext {A B} (f1 f2 : B A A) x1 x2 l1 l2 :
( b a, f1 b a = f2 b a) l1 = l2 x1 = x2 foldr f1 x1 l1 = foldr f2 x2 l2.
Proof. intros Hf -> ->. induction l2 as [|x l2 IH]; f_equal/=; by rewrite Hf, IH. Qed.
Lemma foldr_permutation {A B} (R : relation B) `{!PreOrder R}
(f : A B B) (b : B) `{Hf : !∀ x, Proper (R ==> R) (f x)} (l1 l2 : list A) :
( j1 a1 j2 a2 b,
j1 j2 l1 !! j1 = Some a1 l1 !! j2 = Some a2
R (f a1 (f a2 b)) (f a2 (f a1 b)))
l1 l2 R (foldr f b l1) (foldr f b l2).
Proof.
intros Hf'. induction 1 as [|x l1 l2 _ IH|x y l|l1 l2 l3 Hl12 IH _ IH']; simpl.
- done.
- apply Hf, IH; eauto.
- apply (Hf' 0 _ 1); eauto.
- etrans; [eapply IH, Hf'|].
apply IH'; intros j1 a1 j2 a2 b' ???.
symmetry in Hl12; apply Permutation_inj in Hl12 as [_ (g&?&Hg)].
apply (Hf' (g j1) _ (g j2)); [naive_solver|by rewrite <-Hg..].
Qed.
Lemma foldr_permutation_proper {A B} (R : relation B) `{!PreOrder R}
(f : A B B) (b : B) `{!∀ x, Proper (R ==> R) (f x)}
(Hf : a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) :
Proper (() ==> R) (foldr f b).
Proof. intros l1 l2 Hl. apply foldr_permutation; auto. Qed.
Global Instance foldr_permutation_proper' {A} (R : relation A) `{!PreOrder R}
(f : A A A) (a : A) `{!∀ a, Proper (R ==> R) (f a), !Assoc R f, !Comm R f} :
Proper (() ==> R) (foldr f a).
Proof.
apply (foldr_permutation_proper R f); [solve_proper|].
assert (Proper (R ==> R ==> R) f).
{ intros a1 a2 Ha b1 b2 Hb. by rewrite Hb, (comm f a1), Ha, (comm f). }
intros a1 a2 b.
by rewrite (assoc f), (comm f _ b), (assoc f), (comm f b), (comm f _ a2).
Qed.
Lemma foldr_cons_permute_strong {A B} (R : relation B) `{!PreOrder R}
(f : A B B) (b : B) `{!∀ a, Proper (R ==> R) (f a)} x l :
( j1 a1 j2 a2 b,
j1 j2 (x :: l) !! j1 = Some a1 (x :: l) !! j2 = Some a2
R (f a1 (f a2 b)) (f a2 (f a1 b)))
R (foldr f b (x :: l)) (foldr f (f x b) l).
Proof.
intros. rewrite <-foldr_snoc.
apply (foldr_permutation _ f b); [done|]. by rewrite Permutation_app_comm.
Qed.
Lemma foldr_cons_permute {A} (f : A A A) (a : A) x l :
Assoc (=) f
Comm (=) f
foldr f a (x :: l) = foldr f (f x a) l.
Proof.
intros. apply (foldr_cons_permute_strong (=) f a).
intros j1 a1 j2 a2 b _ _ _. by rewrite !(assoc_L f), (comm_L f a1).
Qed.
(** The following lemma shows that folding over a list twice (using the result
of the first fold as input for the second fold) is equivalent to folding over
the list once, *if* the function is idempotent for the elements of the list
and does not care about the order in which elements are processed. *)
Lemma foldr_idemp_strong {A B} (R : relation B) `{!PreOrder R}
(f : A B B) (b : B) `{!∀ x, Proper (R ==> R) (f x)} (l : list A) :
( j a b,
(** This is morally idempotence for elements of [l] *)
l !! j = Some a
R (f a (f a b)) (f a b))
( j1 a1 j2 a2 b,
(** This is morally commutativity + associativity for elements of [l] *)
j1 j2 l !! j1 = Some a1 l !! j2 = Some a2
R (f a1 (f a2 b)) (f a2 (f a1 b)))
R (foldr f (foldr f b l) l) (foldr f b l).
Proof.
intros Hfidem Hfcomm. induction l as [|x l IH]; simpl; [done|].
trans (f x (f x (foldr f (foldr f b l) l))).
{ f_equiv. rewrite <-foldr_snoc, <-foldr_cons.
apply (foldr_permutation (flip R) f).
- solve_proper.
- intros j1 a1 j2 a2 b' ???. by apply (Hfcomm j2 _ j1).
- by rewrite <-Permutation_cons_append. }
rewrite <-foldr_cons.
trans (f x (f x (foldr f b l))); [|by apply (Hfidem 0)].
simpl. do 2 f_equiv. apply IH.
- intros j a b' ?. by apply (Hfidem (S j)).
- intros j1 a1 j2 a2 b' ???. apply (Hfcomm (S j1) _ (S j2)); auto with lia.
Qed.
Lemma foldr_idemp {A} (f : A A A) (a : A) (l : list A) :
IdemP (=) f
Assoc (=) f
Comm (=) f
foldr f (foldr f a l) l = foldr f a l.
Proof.
intros. apply (foldr_idemp_strong (=) f a).
- intros j a1 a2 _. by rewrite (assoc_L f), (idemp f).
- intros x1 a1 x2 a2 a3 _ _ _. by rewrite !(assoc_L f), (comm_L f a1).
Qed.
Lemma foldr_comm_acc_strong {A B} (R : relation B) `{!PreOrder R}
(f : A B B) (g : B B) b l :
( x, Proper (R ==> R) (f x))
( x y, x l R (f x (g y)) (g (f x y)))
R (foldr f (g b) l) (g (foldr f b l)).
Proof.
intros ? Hcomm. induction l as [|x l IH]; simpl; [done|].
rewrite <-Hcomm by eauto using elem_of_list_here.
by rewrite IH by eauto using elem_of_list_further.
Qed.
Lemma foldr_comm_acc {A B} (f : A B B) (g : B B) (b : B) l :
( x y, f x (g y) = g (f x y))
foldr f (g b) l = g (foldr f b l).
Proof. intros. apply (foldr_comm_acc_strong _); [solve_proper|done]. Qed.
Lemma foldl_app {A B} (f : A B A) (l k : list B) (a : A) :
foldl f a (l ++ k) = foldl f (foldl f a l) k.
Proof. revert a. induction l; simpl; auto. Qed.
Lemma foldl_snoc {A B} (f : A B A) (a : A) l x :
foldl f a (l ++ [x]) = f (foldl f a l) x.
Proof. rewrite foldl_app. done. Qed.
Lemma foldl_fmap {A B C} (f : A B A) x (l : list C) g :
foldl f x (g <$> l) = foldl (λ a b, f a (g b)) x l.
Proof. revert x. induction l; f_equal/=; auto. Qed.
(** ** Properties of the [zip_with] and [zip] functions *)
Global Instance zip_with_proper `{!Equiv A, !Equiv B, !Equiv C} :
Proper ((() ==> () ==> ()) ==>
(≡@{list A}) ==> (≡@{list B}) ==> (≡@{list C})) zip_with.
Proof.
intros f1 f2 Hf. induction 1; destruct 1; simpl; [constructor..|].
f_equiv; [|by auto]. by apply Hf.
Qed.
Section zip_with.
Context {A B C : Type} (f : A B C).
Implicit Types x : A.
Implicit Types y : B.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma zip_with_nil_r l : zip_with f l [] = [].
Proof. by destruct l. Qed.
Lemma zip_with_app l1 l2 k1 k2 :
length l1 = length k1
zip_with f (l1 ++ l2) (k1 ++ k2) = zip_with f l1 k1 ++ zip_with f l2 k2.
Proof. rewrite <-Forall2_same_length. induction 1; f_equal/=; auto. Qed.
Lemma zip_with_app_l l1 l2 k :
zip_with f (l1 ++ l2) k
= zip_with f l1 (take (length l1) k) ++ zip_with f l2 (drop (length l1) k).
Proof.
revert k. induction l1; intros [|??]; f_equal/=; auto. by destruct l2.
Qed.
Lemma zip_with_app_r l k1 k2 :
zip_with f l (k1 ++ k2)
= zip_with f (take (length k1) l) k1 ++ zip_with f (drop (length k1) l) k2.
Proof. revert l. induction k1; intros [|??]; f_equal/=; auto. Qed.
Lemma zip_with_flip l k : zip_with (flip f) k l = zip_with f l k.
Proof. revert k. induction l; intros [|??]; f_equal/=; auto. Qed.
Lemma zip_with_ext (g : A B C) l1 l2 k1 k2 :
( x y, f x y = g x y) l1 = l2 k1 = k2
zip_with f l1 k1 = zip_with g l2 k2.
Proof. intros ? <-<-. revert k1. by induction l1; intros [|??]; f_equal/=. Qed.
Lemma Forall_zip_with_ext_l (g : A B C) l k1 k2 :
Forall (λ x, y, f x y = g x y) l k1 = k2
zip_with f l k1 = zip_with g l k2.
Proof. intros Hl <-. revert k1. by induction Hl; intros [|??]; f_equal/=. Qed.
Lemma Forall_zip_with_ext_r (g : A B C) l1 l2 k :
l1 = l2 Forall (λ y, x, f x y = g x y) k
zip_with f l1 k = zip_with g l2 k.
Proof. intros <- Hk. revert l1. by induction Hk; intros [|??]; f_equal/=. Qed.
Lemma zip_with_fmap_l {D} (g : D A) lD k :
zip_with f (g <$> lD) k = zip_with (λ z, f (g z)) lD k.
Proof. revert k. by induction lD; intros [|??]; f_equal/=. Qed.
Lemma zip_with_fmap_r {D} (g : D B) l kD :
zip_with f l (g <$> kD) = zip_with (λ x z, f x (g z)) l kD.
Proof. revert kD. by induction l; intros [|??]; f_equal/=. Qed.
Lemma zip_with_nil_inv l k : zip_with f l k = [] l = [] k = [].
Proof. destruct l, k; intros; simplify_eq/=; auto. Qed.
Lemma zip_with_cons_inv l k z lC :
zip_with f l k = z :: lC
x y l' k', z = f x y lC = zip_with f l' k' l = x :: l' k = y :: k'.
Proof. intros. destruct l, k; simplify_eq/=; repeat eexists. Qed.
Lemma zip_with_app_inv l k lC1 lC2 :
zip_with f l k = lC1 ++ lC2
l1 k1 l2 k2, lC1 = zip_with f l1 k1 lC2 = zip_with f l2 k2
l = l1 ++ l2 k = k1 ++ k2 length l1 = length k1.
Proof.
revert l k. induction lC1 as [|z lC1 IH]; simpl.
{ intros l k ?. by eexists [], [], l, k. }
intros [|x l] [|y k] ?; simplify_eq/=.
destruct (IH l k) as (l1&k1&l2&k2&->&->&->&->&?); [done |].
exists (x :: l1), (y :: k1), l2, k2; simpl; auto with congruence.
Qed.
Lemma zip_with_inj `{!Inj2 (=) (=) (=) f} l1 l2 k1 k2 :
length l1 = length k1 length l2 = length k2
zip_with f l1 k1 = zip_with f l2 k2 l1 = l2 k1 = k2.
Proof.
rewrite <-!Forall2_same_length. intros Hl. revert l2 k2.
induction Hl; intros ?? [] ?; f_equal; naive_solver.
Qed.
Lemma length_zip_with l k :
length (zip_with f l k) = min (length l) (length k).
Proof. revert k. induction l; intros [|??]; simpl; auto with lia. Qed.
Lemma length_zip_with_l l k :
length l length k length (zip_with f l k) = length l.
Proof. rewrite length_zip_with; lia. Qed.
Lemma length_zip_with_l_eq l k :
length l = length k length (zip_with f l k) = length l.
Proof. rewrite length_zip_with; lia. Qed.
Lemma length_zip_with_r l k :
length k length l length (zip_with f l k) = length k.
Proof. rewrite length_zip_with; lia. Qed.
Lemma length_zip_with_r_eq l k :
length k = length l length (zip_with f l k) = length k.
Proof. rewrite length_zip_with; lia. Qed.
Lemma length_zip_with_same_l P l k :
Forall2 P l k length (zip_with f l k) = length l.
Proof. induction 1; simpl; auto. Qed.
Lemma length_zip_with_same_r P l k :
Forall2 P l k length (zip_with f l k) = length k.
Proof. induction 1; simpl; auto. Qed.
Lemma lookup_zip_with l k i :
zip_with f l k !! i = (x l !! i; y k !! i; Some (f x y)).
Proof.
revert k i. induction l; intros [|??] [|?]; f_equal/=; auto.
by destruct (_ !! _).
Qed.
Lemma lookup_total_zip_with `{!Inhabited A, !Inhabited B, !Inhabited C} l k i :
i < length l i < length k zip_with f l k !!! i = f (l !!! i) (k !!! i).
Proof.
intros [x Hx]%lookup_lt_is_Some_2 [y Hy]%lookup_lt_is_Some_2.
by rewrite !list_lookup_total_alt, lookup_zip_with, Hx, Hy.
Qed.
Lemma lookup_zip_with_Some l k i z :
zip_with f l k !! i = Some z
x y, z = f x y l !! i = Some x k !! i = Some y.
Proof. rewrite lookup_zip_with. destruct (l !! i), (k !! i); naive_solver. Qed.
Lemma lookup_zip_with_None l k i :
zip_with f l k !! i = None
l !! i = None k !! i = None.
Proof. rewrite lookup_zip_with. destruct (l !! i), (k !! i); naive_solver. Qed.
Lemma insert_zip_with l k i x y :
<[i:=f x y]>(zip_with f l k) = zip_with f (<[i:=x]>l) (<[i:=y]>k).
Proof. revert i k. induction l; intros [|?] [|??]; f_equal/=; auto. Qed.
Lemma fmap_zip_with_l (g : C A) l k :
( x y, g (f x y) = x) length l length k g <$> zip_with f l k = l.
Proof. revert k. induction l; intros [|??] ??; f_equal/=; auto with lia. Qed.
Lemma fmap_zip_with_r (g : C B) l k :
( x y, g (f x y) = y) length k length l g <$> zip_with f l k = k.
Proof. revert l. induction k; intros [|??] ??; f_equal/=; auto with lia. Qed.
Lemma zip_with_zip l k : zip_with f l k = uncurry f <$> zip l k.
Proof. revert k. by induction l; intros [|??]; f_equal/=. Qed.
Lemma zip_with_fst_snd lk : zip_with f (lk.*1) (lk.*2) = uncurry f <$> lk.
Proof. by induction lk as [|[]]; f_equal/=. Qed.
Lemma zip_with_replicate n x y :
zip_with f (replicate n x) (replicate n y) = replicate n (f x y).
Proof. by induction n; f_equal/=. Qed.
Lemma zip_with_replicate_l n x k :
length k n zip_with f (replicate n x) k = f x <$> k.
Proof. revert n. induction k; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma zip_with_replicate_r n y l :
length l n zip_with f l (replicate n y) = flip f y <$> l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma zip_with_replicate_r_eq n y l :
length l = n zip_with f l (replicate n y) = flip f y <$> l.
Proof. intros; apply zip_with_replicate_r; lia. Qed.
Lemma zip_with_take n l k :
take n (zip_with f l k) = zip_with f (take n l) (take n k).
Proof. revert n k. by induction l; intros [|?] [|??]; f_equal/=. Qed.
Lemma zip_with_drop n l k :
drop n (zip_with f l k) = zip_with f (drop n l) (drop n k).
Proof.
revert n k. induction l; intros [] []; f_equal/=; auto using zip_with_nil_r.
Qed.
Lemma zip_with_take_l' n l k :
length l `min` length k n zip_with f (take n l) k = zip_with f l k.
Proof. revert n k. induction l; intros [] [] ?; f_equal/=; auto with lia. Qed.
Lemma zip_with_take_l l k :
zip_with f (take (length k) l) k = zip_with f l k.
Proof. apply zip_with_take_l'; lia. Qed.
Lemma zip_with_take_r' n l k :
length l `min` length k n zip_with f l (take n k) = zip_with f l k.
Proof. revert n k. induction l; intros [] [] ?; f_equal/=; auto with lia. Qed.
Lemma zip_with_take_r l k :
zip_with f l (take (length l) k) = zip_with f l k.
Proof. apply zip_with_take_r'; lia. Qed.
Lemma zip_with_take_both' n1 n2 l k :
length l `min` length k n1 length l `min` length k n2
zip_with f (take n1 l) (take n2 k) = zip_with f l k.
Proof.
intros.
rewrite zip_with_take_l'; [apply zip_with_take_r' | rewrite length_take]; lia.
Qed.
Lemma zip_with_take_both l k :
zip_with f (take (length k) l) (take (length l) k) = zip_with f l k.
Proof. apply zip_with_take_both'; lia. Qed.
Lemma Forall_zip_with_fst (P : A Prop) (Q : C Prop) l k :
Forall P l Forall (λ y, x, P x Q (f x y)) k
Forall Q (zip_with f l k).
Proof. intros Hl. revert k. induction Hl; destruct 1; simpl in *; auto. Qed.
Lemma Forall_zip_with_snd (P : B Prop) (Q : C Prop) l k :
Forall (λ x, y, P y Q (f x y)) l Forall P k
Forall Q (zip_with f l k).
Proof. intros Hl. revert k. induction Hl; destruct 1; simpl in *; auto. Qed.
Lemma elem_of_lookup_zip_with_1 l k (z : C) :
z zip_with f l k i x y, z = f x y l !! i = Some x k !! i = Some y.
Proof.
intros [i Hin]%elem_of_list_lookup. rewrite lookup_zip_with in Hin.
simplify_option_eq; naive_solver.
Qed.
Lemma elem_of_lookup_zip_with_2 l k x y (z : C) i :
l !! i = Some x k !! i = Some y f x y zip_with f l k.
Proof.
intros Hl Hk. rewrite elem_of_list_lookup.
exists i. by rewrite lookup_zip_with, Hl, Hk.
Qed.
Lemma elem_of_lookup_zip_with l k (z : C) :
z zip_with f l k i x y, z = f x y l !! i = Some x k !! i = Some y.
Proof.
naive_solver eauto using
elem_of_lookup_zip_with_1, elem_of_lookup_zip_with_2.
Qed.
Lemma elem_of_zip_with l k (z : C) :
z zip_with f l k x y, z = f x y x l y k.
Proof.
intros ?%elem_of_lookup_zip_with.
naive_solver eauto using elem_of_list_lookup_2.
Qed.
End zip_with.
Lemma zip_with_diag {A C} (f : A A C) l :
zip_with f l l = (λ x, f x x) <$> l.
Proof. induction l as [|?? IH]; [done|]. simpl. rewrite IH. done. Qed.
Section zip.
Context {A B : Type}.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma fst_zip l k : length l length k (zip l k).*1 = l.
Proof. by apply fmap_zip_with_l. Qed.
Lemma snd_zip l k : length k length l (zip l k).*2 = k.
Proof. by apply fmap_zip_with_r. Qed.
Lemma zip_fst_snd (lk : list (A * B)) : zip (lk.*1) (lk.*2) = lk.
Proof. by induction lk as [|[]]; f_equal/=. Qed.
Lemma Forall2_fst P l1 l2 k1 k2 :
length l2 = length k2 Forall2 P l1 k1
Forall2 (λ x y, P (x.1) (y.1)) (zip l1 l2) (zip k1 k2).
Proof.
rewrite <-Forall2_same_length. intros Hlk2 Hlk1. revert l2 k2 Hlk2.
induction Hlk1; intros ?? [|??????]; simpl; auto.
Qed.
Lemma Forall2_snd P l1 l2 k1 k2 :
length l1 = length k1 Forall2 P l2 k2
Forall2 (λ x y, P (x.2) (y.2)) (zip l1 l2) (zip k1 k2).
Proof.
rewrite <-Forall2_same_length. intros Hlk1 Hlk2. revert l1 k1 Hlk1.
induction Hlk2; intros ?? [|??????]; simpl; auto.
Qed.
Lemma elem_of_zip_l x1 x2 l k :
(x1, x2) zip l k x1 l.
Proof. intros ?%elem_of_zip_with. naive_solver. Qed.
Lemma elem_of_zip_r x1 x2 l k :
(x1, x2) zip l k x2 k.
Proof. intros ?%elem_of_zip_with. naive_solver. Qed.
Lemma length_zip l k :
length (zip l k) = min (length l) (length k).
Proof. by rewrite length_zip_with. Qed.
Lemma zip_nil_inv l k :
zip l k = [] l = [] k = [].
Proof. intros. by eapply zip_with_nil_inv. Qed.
Lemma lookup_zip_Some l k i x y :
zip l k !! i = Some (x, y) l !! i = Some x k !! i = Some y.
Proof. rewrite lookup_zip_with_Some. naive_solver. Qed.
Lemma lookup_zip_None l k i :
zip l k !! i = None l !! i = None k !! i = None.
Proof. by rewrite lookup_zip_with_None. Qed.
End zip.
Lemma zip_diag {A} (l : list A) :
zip l l = (λ x, (x, x)) <$> l.
Proof. apply zip_with_diag. Qed.
Lemma elem_of_zipped_map {A B} (f : list A list A A B) l k x :
x zipped_map f l k
k' k'' y, k = k' ++ [y] ++ k'' x = f (reverse k' ++ l) k'' y.
Proof.
split.
- revert l. induction k as [|z k IH]; simpl; intros l; inv 1.
{ by eexists [], k, z. }
destruct (IH (z :: l)) as (k'&k''&y&->&->); [done |].
eexists (z :: k'), k'', y. by rewrite reverse_cons, <-(assoc_L (++)).
- intros (k'&k''&y&->&->). revert l. induction k' as [|z k' IH]; [by left|].
intros l; right. by rewrite reverse_cons, <-!(assoc_L (++)).
Qed.
Section zipped_list_ind.
Context {A} (P : list A list A Prop).
Context (Pnil : l, P l []) (Pcons : l k x, P (x :: l) k P l (x :: k)).
Fixpoint zipped_list_ind l k : P l k :=
match k with
| [] => Pnil _ | x :: k => Pcons _ _ _ (zipped_list_ind (x :: l) k)
end.
End zipped_list_ind.
Lemma zipped_Forall_app {A} (P : list A list A A Prop) l k k' :
zipped_Forall P l (k ++ k') zipped_Forall P (reverse k ++ l) k'.
Proof.
revert l. induction k as [|x k IH]; simpl; [done |].
inv 1. rewrite reverse_cons, <-(assoc_L (++)). by apply IH.
Qed.
(** This file collects general purpose definitions and theorems on
lists of numbers that are not in the Coq standard library. *)
From stdpp Require Export list.
From stdpp Require Export list_basics list_monad list_misc list_tactics.
From stdpp Require Import options.
(** * Definitions *)
(** [seqZ m n] generates the sequence [m], [m + 1], ..., [m + n - 1]
over integers, provided [0 ≤ n]. If [n < 0], then the range is empty. **)
Definition seqZ (m len: Z) : list Z :=
(λ i: nat, Z.add i m) <$> (seq 0 (Z.to_nat len)).
Arguments seqZ : simpl never.
(λ i: nat, Z.add (Z.of_nat i) m) <$> (seq 0 (Z.to_nat len)).
Global Arguments seqZ : simpl never.
Definition sum_list_with {A} (f : A nat) : list A nat :=
fix go l :=
......@@ -26,11 +26,37 @@ Definition max_list_with {A} (f : A → nat) : list A → nat :=
end.
Notation max_list := (max_list_with id).
(** ** Conversion of integers to and from little endian *)
(** [Z_to_little_endian m n z] converts [z] into a list of [m] [n]-bit
integers in the little endian format. A negative [z] is encoded using
two's-complement. If [z] uses more than [m * n] bits, these additional
bits are discarded (see [Z_to_little_endian_to_Z]). [m] and [n] should be
non-negative. *)
Definition Z_to_little_endian (m n : Z) : Z list Z :=
Z.iter m (λ rec z, Z.land z (Z.ones n) :: rec (z n)%Z) (λ _, []).
Global Arguments Z_to_little_endian : simpl never.
(** [little_endian_to_Z n bs] converts the list [bs] of [n]-bit integers
into a number by interpreting [bs] as the little endian encoding.
The integers [b] in [bs] should be in the range [0 ≤ b < 2 ^ n]. *)
Fixpoint little_endian_to_Z (n : Z) (bs : list Z) : Z :=
match bs with
| [] => 0
| b :: bs => Z.lor b (little_endian_to_Z n bs n)
end.
(** * Properties *)
(** ** Properties of the [seq] function *)
Section seq.
Implicit Types m n i j : nat.
(* TODO: Coq 8.20 has the same lemma under the same name, so remove our version
once we require Coq 8.20. In Coq 8.19 and before, this lemma is called
[seq_length]. *)
Lemma length_seq m n : length (seq m n) = n.
Proof. revert m. induction n; intros; f_equal/=; auto. Qed.
Lemma fmap_add_seq j j' n : Nat.add j <$> seq j' n = seq (j + j') n.
Proof.
revert j'. induction n as [|n IH]; intros j'; csimpl; [reflexivity|].
......@@ -67,25 +93,44 @@ Section seq.
Qed.
Lemma NoDup_seq j n : NoDup (seq j n).
Proof. apply NoDup_ListNoDup, seq_NoDup. Qed.
Lemma seq_S_end_app j n : seq j (S n) = seq j n ++ [j + n].
Proof.
revert j. induction n as [|n IH]; intros j; simpl in *; f_equal; [done |].
by rewrite IH, Nat.add_succ_r.
Qed.
Lemma elem_of_seq j n k :
k seq j n j k < j + n.
Proof. rewrite elem_of_list_In, in_seq. done. Qed.
Lemma seq_nil n m : seq n m = [] m = 0.
Proof. by destruct m. Qed.
Lemma seq_subseteq_mono m n1 n2 : n1 n2 seq m n1 seq m n2.
Proof. by intros Hle i Hi%elem_of_seq; apply elem_of_seq; lia. Qed.
Lemma Forall_seq (P : nat Prop) i n :
Forall P (seq i n) j, i j < i + n P j.
Proof. rewrite Forall_forall. setoid_rewrite elem_of_seq. auto with lia. Qed.
Lemma drop_seq j n m :
drop m (seq j n) = seq (j + m) (n - m).
Proof.
revert j m. induction n as [|n IH]; simpl; intros j m.
- rewrite drop_nil. done.
- destruct m; simpl.
+ rewrite Nat.add_0_r. done.
+ rewrite IH. f_equal; lia.
Qed.
Lemma take_seq j n m :
take m (seq j n) = seq j (m `min` n).
Proof.
rewrite Forall_lookup. split.
- intros H j [??]. apply (H (j - i)), lookup_seq. lia.
- intros H j x [-> ?]%lookup_seq. auto with lia.
revert j m. induction n as [|n IH]; simpl; intros j m.
- rewrite take_nil. replace (m `min` 0) with 0 by lia. done.
- destruct m; simpl; auto with f_equal.
Qed.
End seq.
(** ** Properties of the [seqZ] function *)
Section seqZ.
Implicit Types (m n : Z) (i j : nat).
Local Open Scope Z.
Local Open Scope Z_scope.
Lemma seqZ_nil m n : n 0 seqZ m n = [].
Proof. by destruct n. Qed.
......@@ -96,57 +141,77 @@ Section seqZ.
rewrite <-fmap_S_seq, <-list_fmap_compose.
apply map_ext; naive_solver lia.
Qed.
Lemma seqZ_length m n : length (seqZ m n) = Z.to_nat n.
Proof. unfold seqZ; by rewrite fmap_length, seq_length. Qed.
Lemma length_seqZ m n : length (seqZ m n) = Z.to_nat n.
Proof. unfold seqZ; by rewrite length_fmap, length_seq. Qed.
Lemma fmap_add_seqZ m m' n : Z.add m <$> seqZ m' n = seqZ (m + m') n.
Proof.
revert m'. induction n as [|n ? IH|] using (Z_succ_pred_induction 0); intros m'.
revert m'. induction n as [|n ? IH|] using (Z.succ_pred_induction 0); intros m'.
- by rewrite seqZ_nil.
- rewrite (seqZ_cons m') by lia. rewrite (seqZ_cons (m + m')) by lia.
f_equal/=. rewrite Z.pred_succ, IH; simpl. f_equal; lia.
- by rewrite !seqZ_nil by lia.
Qed.
Lemma lookup_seqZ_lt m n i : i < n seqZ m n !! i = Some (m + i).
Lemma lookup_seqZ_lt m n i : Z.of_nat i < n seqZ m n !! i = Some (m + Z.of_nat i).
Proof.
revert m i. induction n as [|n ? IH|] using (Z_succ_pred_induction 0);
revert m i. induction n as [|n ? IH|] using (Z.succ_pred_induction 0);
intros m i Hi; [lia| |lia].
rewrite seqZ_cons by lia. destruct i as [|i]; simpl.
- f_equal; lia.
- rewrite Z.pred_succ, IH by lia. f_equal; lia.
Qed.
Lemma lookup_total_seqZ_lt m n i : i < n seqZ m n !!! i = m + i.
Lemma lookup_total_seqZ_lt m n i : Z.of_nat i < n seqZ m n !!! i = m + Z.of_nat i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_seqZ_lt. Qed.
Lemma lookup_seqZ_ge m n i : n i seqZ m n !! i = None.
Lemma lookup_seqZ_ge m n i : n Z.of_nat i seqZ m n !! i = None.
Proof.
revert m i.
induction n as [|n ? IH|] using (Z_succ_pred_induction 0); intros m i Hi; try lia.
induction n as [|n ? IH|] using (Z.succ_pred_induction 0); intros m i Hi; try lia.
- by rewrite seqZ_nil.
- rewrite seqZ_cons by lia.
destruct i as [|i]; simpl; [lia|]. by rewrite Z.pred_succ, IH by lia.
- by rewrite seqZ_nil by lia.
Qed.
Lemma lookup_total_seqZ_ge m n i : n i seqZ m n !!! i = inhabitant.
Lemma lookup_total_seqZ_ge m n i : n Z.of_nat i seqZ m n !!! i = inhabitant.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_seqZ_ge. Qed.
Lemma lookup_seqZ m n i m' : seqZ m n !! i = Some m' m' = m + i i < n.
Lemma lookup_seqZ m n i m' : seqZ m n !! i = Some m' m' = m + Z.of_nat i Z.of_nat i < n.
Proof.
destruct (Z_le_gt_dec n i).
destruct (Z_le_gt_dec n (Z.of_nat i)).
- rewrite lookup_seqZ_ge by lia. naive_solver lia.
- rewrite lookup_seqZ_lt by lia. naive_solver lia.
Qed.
Lemma NoDup_seqZ m n : NoDup (seqZ m n).
Proof. apply NoDup_fmap_2, NoDup_seq. intros ???; lia. Qed.
Lemma Forall_seqZ (P : Z Prop) m n :
Forall P (seqZ m n) m', m m' < m + n P m'.
Lemma seqZ_app m n1 n2 :
0 n1
0 n2
seqZ m (n1 + n2) = seqZ m n1 ++ seqZ (m + n1) n2.
Proof.
rewrite Forall_lookup. split.
- intros H j [??]. apply (H (Z.to_nat (j - m))), lookup_seqZ.
rewrite !Z2Nat.id by lia. lia.
- intros H j x [-> ?]%lookup_seqZ. auto with lia.
intros. unfold seqZ. rewrite Z2Nat.inj_add, seq_app, fmap_app by done.
f_equal. rewrite Nat.add_comm, <-!fmap_add_seq, <-list_fmap_compose.
apply list_fmap_ext; intros j n; simpl.
rewrite Nat2Z.inj_add, Z2Nat.id by done. lia.
Qed.
Lemma seqZ_S m i : seqZ m (Z.of_nat (S i)) = seqZ m (Z.of_nat i) ++ [m + Z.of_nat i].
Proof.
unfold seqZ. rewrite !Nat2Z.id, seq_S, fmap_app.
simpl. by rewrite Z.add_comm.
Qed.
Lemma elem_of_seqZ m n k :
k seqZ m n m k < m + n.
Proof.
rewrite elem_of_list_lookup.
setoid_rewrite lookup_seqZ. split; [naive_solver lia|].
exists (Z.to_nat (k - m)). rewrite Z2Nat.id by lia. lia.
Qed.
Lemma Forall_seqZ (P : Z Prop) m n :
Forall P (seqZ m n) m', m m' < m + n P m'.
Proof. rewrite Forall_forall. setoid_rewrite elem_of_seqZ. auto with lia. Qed.
End seqZ.
(** ** Properties of the [sum_list] and [max_list] functions *)
(** ** Properties of the [sum_list] function *)
Section sum_list.
Context {A : Type}.
Implicit Types x y z : A.
......@@ -159,15 +224,222 @@ Section sum_list.
Proof.
induction l; simpl; rewrite ?reverse_cons, ?sum_list_with_app; simpl; lia.
Qed.
Lemma sum_list_with_in x (f : A nat) ls : x ls f x sum_list_with f ls.
Proof. induction 1; simpl; lia. Qed.
Lemma join_reshape szs l :
sum_list szs = length l mjoin (reshape szs l) = l.
Proof.
revert l. induction szs as [|sz szs IH]; simpl; intros l Hl; [by destruct l|].
by rewrite IH, take_drop by (rewrite drop_length; lia).
by rewrite IH, take_drop by (rewrite length_drop; lia).
Qed.
Lemma sum_list_replicate n m : sum_list (replicate m n) = m * n.
Proof. induction m; simpl; auto. Qed.
Lemma max_list_elem_of_le n ns:
Lemma sum_list_fmap_same n l f :
Forall (λ x, f x = n) l
sum_list (f <$> l) = length l * n.
Proof. induction 1; csimpl; lia. Qed.
Lemma sum_list_fmap_const l n :
sum_list ((λ _, n) <$> l) = length l * n.
Proof. by apply sum_list_fmap_same, Forall_true. Qed.
End sum_list.
(** ** Properties of the [mjoin] function that rely on [sum_list] *)
Section mjoin.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
Implicit Types ls : list (list A).
Lemma length_join ls:
length (mjoin ls) = sum_list (length <$> ls).
Proof. induction ls; [done|]; csimpl. rewrite length_app. lia. Qed.
Lemma join_lookup_Some ls i x :
mjoin ls !! i = Some x j l i', ls !! j = Some l l !! i' = Some x
i = sum_list (length <$> take j ls) + i'.
Proof.
revert i. induction ls as [|l ls IH]; csimpl; intros i.
{ setoid_rewrite lookup_nil. naive_solver. }
rewrite lookup_app_Some, IH. split.
- destruct 1 as [?|(?&?&?&?&?&?&?)].
+ eexists 0. naive_solver.
+ eexists (S _); naive_solver lia.
- destruct 1 as [[|?] ?]; naive_solver lia.
Qed.
Lemma join_lookup_Some_same_length n ls i x :
Forall (λ l, length l = n) ls
mjoin ls !! i = Some x j l i', ls !! j = Some l l !! i' = Some x
i = j * n + i'.
Proof.
intros Hl. rewrite join_lookup_Some.
f_equiv; intros j. f_equiv; intros l. f_equiv; intros i'.
assert (ls !! j = Some l j < length ls) by eauto using lookup_lt_Some.
rewrite (sum_list_fmap_same n), length_take by auto using Forall_take.
naive_solver lia.
Qed.
Lemma join_lookup_Some_same_length' n ls j i x :
Forall (λ l, length l = n) ls
i < n
mjoin ls !! (j * n + i) = Some x l, ls !! j = Some l l !! i = Some x.
Proof.
intros. rewrite join_lookup_Some_same_length by done.
split; [|naive_solver].
destruct 1 as (j'&l'&i'&?&?&Hj); decompose_Forall.
assert (i' < length l') by eauto using lookup_lt_Some.
apply Nat.mul_split_l in Hj; naive_solver.
Qed.
End mjoin.
(** ** Properties of the [max_list] function *)
Section max_list.
Context {A : Type}.
Lemma max_list_elem_of_le n ns :
n ns n max_list ns.
Proof. induction 1; simpl; lia. Qed.
End sum_list.
Lemma max_list_not_elem_of_gt n ns : max_list ns < n n ns.
Proof. intros ??%max_list_elem_of_le. lia. Qed.
Lemma max_list_elem_of ns : ns [] max_list ns ns.
Proof.
intros. induction ns as [|n ns IHns]; [done|]. simpl.
destruct (Nat.max_spec n (max_list ns)) as [[? ->]|[? ->]].
- destruct ns.
+ simpl in *. lia.
+ by apply elem_of_list_further, IHns.
- apply elem_of_list_here.
Qed.
End max_list.
(** ** Properties of the [Z_to_little_endian] and [little_endian_to_Z] functions *)
Section Z_little_endian.
Local Open Scope Z_scope.
Implicit Types m n z : Z.
Lemma Z_to_little_endian_0 n z : Z_to_little_endian 0 n z = [].
Proof. done. Qed.
Lemma Z_to_little_endian_succ m n z :
0 m
Z_to_little_endian (Z.succ m) n z
= Z.land z (Z.ones n) :: Z_to_little_endian m n (z n).
Proof.
unfold Z_to_little_endian. intros.
by rewrite !iter_nat_of_Z, Zabs2Nat.inj_succ by lia.
Qed.
Lemma Z_to_little_endian_to_Z m n bs :
m = Z.of_nat (length bs) 0 n
Forall (λ b, 0 b < 2 ^ n) bs
Z_to_little_endian m n (little_endian_to_Z n bs) = bs.
Proof.
intros -> ?. induction 1 as [|b bs ? ? IH]; [done|]; simpl.
rewrite Nat2Z.inj_succ, Z_to_little_endian_succ by lia. f_equal.
- apply Z.bits_inj_iff'. intros z' ?.
rewrite !Z.land_spec, Z.lor_spec, Z.ones_spec by lia.
case_bool_decide.
+ rewrite andb_true_r, Z.shiftl_spec_low, orb_false_r by lia. done.
+ rewrite andb_false_r.
symmetry. eapply (Z.bounded_iff_bits_nonneg n); lia.
- rewrite <-IH at 3. f_equal.
apply Z.bits_inj_iff'. intros z' ?.
rewrite Z.shiftr_spec, Z.lor_spec, Z.shiftl_spec by lia.
assert (Z.testbit b (z' + n) = false) as ->.
{ apply (Z.bounded_iff_bits_nonneg n); lia. }
rewrite orb_false_l. f_equal. lia.
Qed.
Lemma little_endian_to_Z_to_little_endian m n z :
0 n 0 m
little_endian_to_Z n (Z_to_little_endian m n z) = z `mod` 2 ^ (m * n).
Proof.
intros ? Hm. rewrite <-Z.land_ones by lia.
revert z.
induction m as [|m ? IH|] using (Z.succ_pred_induction 0); intros z; [..|lia].
{ Z.bitwise. by rewrite andb_false_r. }
rewrite Z_to_little_endian_succ by lia; simpl. rewrite IH by lia.
apply Z.bits_inj_iff'. intros z' ?.
rewrite Z.land_spec, Z.lor_spec, Z.shiftl_spec, !Z.land_spec by lia.
rewrite (Z.ones_spec n z') by lia. case_bool_decide.
- rewrite andb_true_r, (Z.testbit_neg_r _ (z' - n)), orb_false_r by lia. simpl.
by rewrite Z.ones_spec, bool_decide_true, andb_true_r by lia.
- rewrite andb_false_r, orb_false_l.
rewrite Z.shiftr_spec by lia. f_equal; [f_equal; lia|].
rewrite !Z.ones_spec by lia. apply bool_decide_ext. lia.
Qed.
Lemma length_Z_to_little_endian m n z :
0 m
Z.of_nat (length (Z_to_little_endian m n z)) = m.
Proof.
intros. revert z. induction m as [|m ? IH|]
using (Z.succ_pred_induction 0); intros z; [done| |lia].
rewrite Z_to_little_endian_succ by lia. simpl. by rewrite Nat2Z.inj_succ, IH.
Qed.
Lemma Z_to_little_endian_bound m n z :
0 n 0 m
Forall (λ b, 0 b < 2 ^ n) (Z_to_little_endian m n z).
Proof.
intros. revert z.
induction m as [|m ? IH|] using (Z.succ_pred_induction 0); intros z; [..|lia].
{ by constructor. }
rewrite Z_to_little_endian_succ by lia.
constructor; [|by apply IH]. rewrite Z.land_ones by lia.
apply Z.mod_pos_bound, Z.pow_pos_nonneg; lia.
Qed.
Lemma little_endian_to_Z_bound n bs :
0 n
Forall (λ b, 0 b < 2 ^ n) bs
0 little_endian_to_Z n bs < 2 ^ (Z.of_nat (length bs) * n).
Proof.
intros ?. induction 1 as [|b bs Hb ? IH]; [done|]; simpl.
apply Z.bounded_iff_bits_nonneg'; [lia|..].
{ apply Z.lor_nonneg. split; [lia|]. apply Z.shiftl_nonneg. lia. }
intros z' ?. rewrite Z.lor_spec.
rewrite Z.bounded_iff_bits_nonneg' in Hb by lia.
rewrite Hb, orb_false_l, Z.shiftl_spec by lia.
apply (Z.bounded_iff_bits_nonneg' (Z.of_nat (length bs) * n)); lia.
Qed.
Lemma Z_to_little_endian_lookup_Some m n z (i : nat) x :
0 m 0 n
Z_to_little_endian m n z !! i = Some x
Z.of_nat i < m x = Z.land (z (Z.of_nat i * n)) (Z.ones n).
Proof.
revert z i. induction m as [|m ? IH|] using (Z.succ_pred_induction 0);
intros z i ??; [..|lia].
{ destruct i; simpl; naive_solver lia. }
rewrite Z_to_little_endian_succ by lia. destruct i as [|i]; simpl.
{ naive_solver lia. }
rewrite IH, Z.shiftr_shiftr by lia.
naive_solver auto with f_equal lia.
Qed.
Lemma little_endian_to_Z_spec n bs i b :
0 i 0 < n
Forall (λ b, 0 b < 2 ^ n) bs
bs !! Z.to_nat (i `div` n) = Some b
Z.testbit (little_endian_to_Z n bs) i = Z.testbit b (i `mod` n).
Proof.
intros Hi Hn Hbs. revert i Hi.
induction Hbs as [|b' bs [??] ? IH]; intros i ? Hlookup; simplify_eq/=.
destruct (decide (i < n)).
- rewrite Z.div_small in Hlookup by lia. simplify_eq/=.
rewrite Z.lor_spec, Z.shiftl_spec, Z.mod_small by lia.
by rewrite (Z.testbit_neg_r _ (i - n)), orb_false_r by lia.
- assert (Z.to_nat (i `div` n) = S (Z.to_nat ((i - n) `div` n))) as Hdiv.
{ rewrite <-Z2Nat.inj_succ by (apply Z.div_pos; lia).
rewrite <-Z.add_1_r, <-Z.div_add by lia.
do 2 f_equal. lia. }
rewrite Hdiv in Hlookup; simplify_eq/=.
rewrite Z.lor_spec, Z.shiftl_spec, IH by auto with lia.
assert (Z.testbit b' i = false) as ->.
{ apply (Z.bounded_iff_bits_nonneg n); lia. }
by rewrite <-Zminus_mod_idemp_r, Z_mod_same_full, Z.sub_0_r.
Qed.
End Z_little_endian.
From Coq Require Export Permutation.
From stdpp Require Export numbers base option list_basics.
From stdpp Require Import options.
Global Instance: Params (@Forall) 1 := {}.
Global Instance: Params (@Exists) 1 := {}.
Global Instance: Params (@NoDup) 1 := {}.
Global Arguments Permutation {_} _ _ : assert.
Global Arguments Forall_cons {_} _ _ _ _ _ : assert.
Infix "≡ₚ" := Permutation (at level 70, no associativity) : stdpp_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : stdpp_scope.
Notation "( x ≡ₚ.)" := (Permutation x) (only parsing) : stdpp_scope.
Notation "(.≡ₚ x )" := (λ y, y x) (only parsing) : stdpp_scope.
Notation "(≢ₚ)" := (λ x y, ¬x y) (only parsing) : stdpp_scope.
Notation "x ≢ₚ y":= (¬x y) (at level 70, no associativity) : stdpp_scope.
Notation "( x ≢ₚ.)" := (λ y, x y) (only parsing) : stdpp_scope.
Notation "(.≢ₚ x )" := (λ y, y x) (only parsing) : stdpp_scope.
Infix "≡ₚ@{ A }" :=
(@Permutation A) (at level 70, no associativity, only parsing) : stdpp_scope.
Notation "(≡ₚ@{ A } )" := (@Permutation A) (only parsing) : stdpp_scope.
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
| nil_equiv : [] []
| cons_equiv x y l k : x y l k x :: l y :: k.
Global Existing Instance list_equiv.
(** The predicate [suffix] holds if the first list is a suffix of the second.
The predicate [prefix] holds if the first list is a prefix of the second. *)
Definition suffix {A} : relation (list A) := λ l1 l2, k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2, k, l2 = l1 ++ k.
Infix "`suffix_of`" := suffix (at level 70) : stdpp_scope.
Infix "`prefix_of`" := prefix (at level 70) : stdpp_scope.
Global Hint Extern 0 (_ `prefix_of` _) => reflexivity : core.
Global Hint Extern 0 (_ `suffix_of` _) => reflexivity : core.
(** A list is a "subset" of another if each element of the first also appears
somewhere in the second. *)
Global Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2, x, x l1 x l2.
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
| sublist_nil : sublist [] []
| sublist_skip x l1 l2 : sublist l1 l2 sublist (x :: l1) (x :: l2)
| sublist_cons x l1 l2 : sublist l1 l2 sublist l1 (x :: l2).
Infix "`sublist_of`" := sublist (at level 70) : stdpp_scope.
Global Hint Extern 0 (_ `sublist_of` _) => reflexivity : core.
(** A list [l2] submseteq a list [l1] if [l2] is obtained by removing elements
from [l1] while possibly changing the order. *)
Inductive submseteq {A} : relation (list A) :=
| submseteq_nil : submseteq [] []
| submseteq_skip x l1 l2 : submseteq l1 l2 submseteq (x :: l1) (x :: l2)
| submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
| submseteq_cons x l1 l2 : submseteq l1 l2 submseteq l1 (x :: l2)
| submseteq_trans l1 l2 l3 : submseteq l1 l2 submseteq l2 l3 submseteq l1 l3.
Infix "⊆+" := submseteq (at level 70) : stdpp_scope.
Global Hint Extern 0 (_ ⊆+ _) => reflexivity : core.
Section prefix_suffix_ops.
Context `{EqDecision A}.
Definition max_prefix : list A list A list A * list A * list A :=
fix go l1 l2 :=
match l1, l2 with
| [], l2 => ([], l2, [])
| l1, [] => (l1, [], [])
| x1 :: l1, x2 :: l2 =>
if decide_rel (=) x1 x2
then prod_map id (x1 ::.) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
end.
Definition max_suffix (l1 l2 : list A) : list A * list A * list A :=
match max_prefix (reverse l1) (reverse l2) with
| (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
end.
Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
End prefix_suffix_ops.
Inductive Forall3 {A B C} (P : A B C Prop) :
list A list B list C Prop :=
| Forall3_nil : Forall3 P [] [] []
| Forall3_cons x y z l k k' :
P x y z Forall3 P l k k' Forall3 P (x :: l) (y :: k) (z :: k').
Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
(** ** Properties of the [NoDup] predicate *)
Lemma NoDup_nil : NoDup (@nil A) True.
Proof. split; constructor. Qed.
Lemma NoDup_cons x l : NoDup (x :: l) x l NoDup l.
Proof. split; [by inv 1|]. intros [??]. by constructor. Qed.
Lemma NoDup_cons_1_1 x l : NoDup (x :: l) x l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_1_2 x l : NoDup (x :: l) NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_singleton x : NoDup [x].
Proof. constructor; [apply not_elem_of_nil | constructor]. Qed.
Lemma NoDup_app l k : NoDup (l ++ k) NoDup l ( x, x l x k) NoDup k.
Proof.
induction l; simpl.
- rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
- rewrite !NoDup_cons.
setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Qed.
Lemma NoDup_lookup l i j x :
NoDup l l !! i = Some x l !! j = Some x i = j.
Proof.
intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
{ intros; simplify_eq. }
intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
exfalso; eauto using elem_of_list_lookup_2.
Qed.
Lemma NoDup_alt l :
NoDup l i j x, l !! i = Some x l !! j = Some x i = j.
Proof.
split; eauto using NoDup_lookup.
induction l as [|x l IH]; intros Hl; constructor.
- rewrite elem_of_list_lookup. intros [i ?].
opose proof* (Hl (S i) 0); by auto.
- apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
Qed.
Lemma NoDup_filter (P : A Prop) `{ x, Decision (P x)} l :
NoDup l NoDup (filter P l).
Proof.
induction 1; rewrite ?filter_cons; repeat case_decide;
rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
Qed.
Section no_dup_dec.
Context `{!EqDecision A}.
Global Instance NoDup_dec: l, Decision (NoDup l) :=
fix NoDup_dec l :=
match l return Decision (NoDup l) with
| [] => left NoDup_nil_2
| x :: l =>
match decide_rel () x l with
| left Hin => right (λ H, NoDup_cons_1_1 _ _ H Hin)
| right Hin =>
match NoDup_dec l with
| left H => left (NoDup_cons_2 _ _ Hin H)
| right H => right (H NoDup_cons_1_2 _ _)
end
end
end.
Lemma elem_of_remove_dups l x : x remove_dups l x l.
Proof.
split; induction l; simpl; repeat case_decide;
rewrite ?elem_of_cons; intuition (simplify_eq; auto).
Qed.
Lemma NoDup_remove_dups l : NoDup (remove_dups l).
Proof.
induction l; simpl; repeat case_decide; try constructor; auto.
by rewrite elem_of_remove_dups.
Qed.
Lemma NoDup_list_difference l k : NoDup l NoDup (list_difference l k).
Proof.
induction 1; simpl; try case_decide.
- constructor.
- done.
- constructor; [|done]. rewrite elem_of_list_difference; intuition.
Qed.
Lemma NoDup_list_union l k : NoDup l NoDup k NoDup (list_union l k).
Proof.
intros. apply NoDup_app. repeat split.
- by apply NoDup_list_difference.
- intro. rewrite elem_of_list_difference. intuition.
- done.
Qed.
Lemma NoDup_list_intersection l k : NoDup l NoDup (list_intersection l k).
Proof.
induction 1; simpl; try case_decide.
- constructor.
- constructor; [|done]. rewrite elem_of_list_intersection; intuition.
- done.
Qed.
End no_dup_dec.
(** ** Properties of the [Permutation] predicate *)
Lemma Permutation_nil_r l : l [] l = [].
Proof. split; [by intro; apply Permutation_nil | by intros ->]. Qed.
Lemma Permutation_singleton_r l x : l [x] l = [x].
Proof. split; [by intro; apply Permutation_length_1_inv | by intros ->]. Qed.
Lemma Permutation_nil_l l : [] l [] = l.
Proof. by rewrite (symmetry_iff ()), Permutation_nil_r. Qed.
Lemma Permutation_singleton_l l x : [x] l [x] = l.
Proof. by rewrite (symmetry_iff ()), Permutation_singleton_r. Qed.
Lemma Permutation_skip x l l' : l l' x :: l x :: l'.
Proof. apply perm_skip. Qed.
Lemma Permutation_swap x y l : y :: x :: l x :: y :: l.
Proof. apply perm_swap. Qed.
Lemma Permutation_singleton_inj x y : [x] [y] x = y.
Proof. apply Permutation_length_1. Qed.
Global Instance length_Permutation_proper : Proper (() ==> (=)) (@length A).
Proof. induction 1; simpl; auto with lia. Qed.
Global Instance elem_of_Permutation_proper x : Proper (() ==> iff) (x .).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Global Instance NoDup_Permutation_proper: Proper (() ==> iff) (@NoDup A).
Proof.
induction 1 as [|x l k Hlk IH | |].
- by rewrite !NoDup_nil.
- by rewrite !NoDup_cons, IH, Hlk.
- rewrite !NoDup_cons, !elem_of_cons. intuition.
- intuition.
Qed.
Global Instance app_Permutation_comm : Comm () (@app A).
Proof.
intros l1. induction l1 as [|x l1 IH]; intros l2; simpl.
- by rewrite (right_id_L [] (++)).
- rewrite Permutation_middle, IH. simpl. by rewrite Permutation_middle.
Qed.
Global Instance cons_Permutation_inj_r x : Inj () () (x ::.).
Proof. red. eauto using Permutation_cons_inv. Qed.
Global Instance app_Permutation_inj_r k : Inj () () (k ++.).
Proof.
induction k as [|x k IH]; intros l1 l2; simpl; auto.
intros. by apply IH, (inj (x ::.)).
Qed.
Global Instance cons_Permutation_inj_l k : Inj (=) () (.:: k).
Proof.
intros x1 x2 Hperm. apply Permutation_singleton_inj.
apply (inj (k ++.)). by rewrite !(comm (++) k).
Qed.
Global Instance app_Permutation_inj_l k : Inj () () (.++ k).
Proof. intros l1 l2. rewrite !(comm (++) _ k). by apply (inj (k ++.)). Qed.
Lemma replicate_Permutation n x l : replicate n x l replicate n x = l.
Proof.
intros Hl. apply replicate_as_elem_of. split.
- by rewrite <-Hl, length_replicate.
- intros y. rewrite <-Hl. by apply elem_of_replicate_inv.
Qed.
Lemma reverse_Permutation l : reverse l l.
Proof.
induction l as [|x l IH]; [done|].
by rewrite reverse_cons, (comm (++)), IH.
Qed.
Lemma delete_Permutation l i x : l !! i = Some x l x :: delete i l.
Proof.
revert i; induction l as [|y l IH]; intros [|i] ?; simplify_eq/=; auto.
by rewrite Permutation_swap, <-(IH i).
Qed.
Lemma elem_of_Permutation l x : x l k, l x :: k.
Proof.
split.
- intros [i ?]%elem_of_list_lookup. eexists. by apply delete_Permutation.
- intros [k ->]. by left.
Qed.
Lemma Permutation_cons_inv_r l k x :
k x :: l k1 k2, k = k1 ++ x :: k2 l k1 ++ k2.
Proof.
intros Hk. assert ( i, k !! i = Some x) as [i Hi].
{ apply elem_of_list_lookup. rewrite Hk, elem_of_cons; auto. }
exists (take i k), (drop (S i) k). split.
- by rewrite take_drop_middle.
- rewrite <-delete_take_drop. apply (inj (x ::.)).
by rewrite <-Hk, <-(delete_Permutation k) by done.
Qed.
Lemma Permutation_cons_inv_l l k x :
x :: l k k1 k2, k = k1 ++ x :: k2 l k1 ++ k2.
Proof. by intros ?%(symmetry_iff ())%Permutation_cons_inv_r. Qed.
Lemma Permutation_cross_split (la lb lc ld : list A) :
la ++ lb lc ++ ld
lac lad lbc lbd,
lac ++ lad la lbc ++ lbd lb lac ++ lbc lc lad ++ lbd ld.
Proof.
revert lc ld.
induction la as [|x la IH]; simpl; intros lc ld Hperm.
{ exists [], [], lc, ld. by rewrite !(right_id_L [] (++)). }
assert (x lc ++ ld)
as [[lc' Hlc]%elem_of_Permutation|[ld' Hld]%elem_of_Permutation]%elem_of_app.
{ rewrite <-Hperm, elem_of_cons. auto. }
- rewrite Hlc in Hperm. simpl in Hperm. apply (inj (x ::.)) in Hperm.
apply IH in Hperm as (lac&lad&lbc&lbd&Ha&Hb&Hc&Hd).
exists (x :: lac), lad, lbc, lbd; simpl. by rewrite Ha, Hb, Hc, Hd.
- rewrite Hld, <-Permutation_middle in Hperm. apply (inj (x ::.)) in Hperm.
apply IH in Hperm as (lac&lad&lbc&lbd&Ha&Hb&Hc&Hd).
exists lac, (x :: lad), lbc, lbd; simpl.
by rewrite <-Permutation_middle, Ha, Hb, Hc, Hd.
Qed.
Lemma Permutation_inj l1 l2 :
Permutation l1 l2
length l1 = length l2
f : nat nat, Inj (=) (=) f i, l1 !! i = l2 !! f i.
Proof.
split.
- intros Hl; split; [by apply Permutation_length|].
induction Hl as [|x l1 l2 _ [f [??]]|x y l|l1 l2 l3 _ [f [? Hf]] _ [g [? Hg]]].
+ exists id; split; [apply _|done].
+ exists (λ i, match i with 0 => 0 | S i => S (f i) end); split.
* by intros [|i] [|j] ?; simplify_eq/=.
* intros [|i]; simpl; auto.
+ exists (λ i, match i with 0 => 1 | 1 => 0 | _ => i end); split.
* intros [|[|i]] [|[|j]]; congruence.
* by intros [|[|i]].
+ exists (g f); split; [apply _|]. intros i; simpl. by rewrite <-Hg, <-Hf.
- intros (Hlen & f & Hf & Hl). revert l2 f Hlen Hf Hl.
induction l1 as [|x l1 IH]; intros l2 f Hlen Hf Hl; [by destruct l2|].
rewrite (delete_Permutation l2 (f 0) x) by (by rewrite <-Hl).
pose (g n := let m := f (S n) in if lt_eq_lt_dec m (f 0) then m else m - 1).
apply Permutation_skip, (IH _ g).
+ rewrite length_delete by (rewrite <-Hl; eauto); simpl in *; lia.
+ unfold g. intros i j Hg.
repeat destruct (lt_eq_lt_dec _ _) as [[?|?]|?]; simplify_eq/=; try lia.
apply (inj S), (inj f); lia.
+ intros i. unfold g. destruct (lt_eq_lt_dec _ _) as [[?|?]|?].
* by rewrite lookup_delete_lt, <-Hl.
* simplify_eq.
* rewrite lookup_delete_ge, <-Nat.sub_succ_l by lia; simpl.
by rewrite Nat.sub_0_r, <-Hl.
Qed.
Global Instance filter_Permutation (P : A Prop) `{ x, Decision (P x)} :
Proper (() ==> ()) (filter P).
Proof.
induction 1; rewrite ?filter_cons;
repeat (simpl; repeat case_decide); by econstructor.
Qed.
(** ** Properties of the [prefix] and [suffix] predicates *)
Global Instance: PartialOrder (@prefix A).
Proof.
split; [split|].
- intros ?. eexists []. by rewrite (right_id_L [] (++)).
- intros ???[k1->] [k2->]. exists (k1 ++ k2). by rewrite (assoc_L (++)).
- intros l1 l2 [k1 ?] [[|x2 k2] ->]; [|discriminate_list].
by rewrite (right_id_L _ _).
Qed.
Lemma prefix_nil l : [] `prefix_of` l.
Proof. by exists l. Qed.
Lemma prefix_nil_inv l : l `prefix_of` [] l = [].
Proof. intros [k ?]. by destruct l. Qed.
Lemma prefix_nil_not x l : ¬x :: l `prefix_of` [].
Proof. by intros [k ?]. Qed.
Lemma prefix_cons x l1 l2 : l1 `prefix_of` l2 x :: l1 `prefix_of` x :: l2.
Proof. intros [k ->]. by exists k. Qed.
Lemma prefix_cons_alt x y l1 l2 :
x = y l1 `prefix_of` l2 x :: l1 `prefix_of` y :: l2.
Proof. intros ->. apply prefix_cons. Qed.
Lemma prefix_cons_inv_1 x y l1 l2 : x :: l1 `prefix_of` y :: l2 x = y.
Proof. by intros [k ?]; simplify_eq/=. Qed.
Lemma prefix_cons_inv_2 x y l1 l2 :
x :: l1 `prefix_of` y :: l2 l1 `prefix_of` l2.
Proof. intros [k ?]; simplify_eq/=. by exists k. Qed.
Lemma prefix_app k l1 l2 : l1 `prefix_of` l2 k ++ l1 `prefix_of` k ++ l2.
Proof. intros [k' ->]. exists k'. by rewrite (assoc_L (++)). Qed.
Lemma prefix_app_alt k1 k2 l1 l2 :
k1 = k2 l1 `prefix_of` l2 k1 ++ l1 `prefix_of` k2 ++ l2.
Proof. intros ->. apply prefix_app. Qed.
Lemma prefix_app_inv k l1 l2 :
k ++ l1 `prefix_of` k ++ l2 l1 `prefix_of` l2.
Proof.
intros [k' E]. exists k'. rewrite <-(assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma prefix_app_l l1 l2 l3 : l1 ++ l3 `prefix_of` l2 l1 `prefix_of` l2.
Proof. intros [k ->]. exists (l3 ++ k). by rewrite (assoc_L (++)). Qed.
Lemma prefix_app_r l1 l2 l3 : l1 `prefix_of` l2 l1 `prefix_of` l2 ++ l3.
Proof. intros [k ->]. exists (k ++ l3). by rewrite (assoc_L (++)). Qed.
Lemma prefix_take l n : take n l `prefix_of` l.
Proof. rewrite <-(take_drop n l) at 2. apply prefix_app_r. done. Qed.
Lemma prefix_lookup_lt l1 l2 i :
i < length l1 l1 `prefix_of` l2 l1 !! i = l2 !! i.
Proof. intros ? [? ->]. by rewrite lookup_app_l. Qed.
Lemma prefix_lookup_Some l1 l2 i x :
l1 !! i = Some x l1 `prefix_of` l2 l2 !! i = Some x.
Proof. intros ? [k ->]. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
Lemma prefix_length l1 l2 : l1 `prefix_of` l2 length l1 length l2.
Proof. intros [? ->]. rewrite length_app. lia. Qed.
Lemma prefix_snoc_not l x : ¬l ++ [x] `prefix_of` l.
Proof. intros [??]. discriminate_list. Qed.
Lemma elem_of_prefix l1 l2 x :
x l1 l1 `prefix_of` l2 x l2.
Proof. intros Hin [l' ->]. apply elem_of_app. by left. Qed.
(* [prefix] is not a total order, but [l1] and [l2] are always comparable if
they are both prefixes of some [l3]. *)
Lemma prefix_weak_total l1 l2 l3 :
l1 `prefix_of` l3 l2 `prefix_of` l3 l1 `prefix_of` l2 l2 `prefix_of` l1.
Proof.
intros [k1 H1] [k2 H2]. rewrite H2 in H1.
apply app_eq_inv in H1 as [(k&?&?)|(k&?&?)]; [left|right]; exists k; eauto.
Qed.
Global Instance: PartialOrder (@suffix A).
Proof.
split; [split|].
- intros ?. by eexists [].
- intros ???[k1->] [k2->]. exists (k2 ++ k1). by rewrite (assoc_L (++)).
- intros l1 l2 [k1 ?] [[|x2 k2] ->]; [done|discriminate_list].
Qed.
Global Instance prefix_dec `{!EqDecision A} : RelDecision prefix :=
fix go l1 l2 :=
match l1, l2 with
| [], _ => left (prefix_nil _)
| _, [] => right (prefix_nil_not _ _)
| x :: l1, y :: l2 =>
match decide_rel (=) x y with
| left Hxy =>
match go l1 l2 with
| left Hl1l2 => left (prefix_cons_alt _ _ _ _ Hxy Hl1l2)
| right Hl1l2 => right (Hl1l2 prefix_cons_inv_2 _ _ _ _)
end
| right Hxy => right (Hxy prefix_cons_inv_1 _ _ _ _)
end
end.
Lemma prefix_not_elem_of_app_cons_inv x y l1 l2 k1 k2 :
x k1 y l1
(l1 ++ x :: l2) `prefix_of` (k1 ++ y :: k2)
l1 = k1 x = y l2 `prefix_of` k2.
Proof.
intros Hin1 Hin2 [k Hle]. rewrite <-(assoc_L (++)) in Hle.
apply not_elem_of_app_cons_inv_l in Hle; [|done..]. unfold prefix. naive_solver.
Qed.
Lemma prefix_length_eq l1 l2 :
l1 `prefix_of` l2 length l2 length l1 l1 = l2.
Proof.
intros Hprefix Hlen. assert (length l1 = length l2).
{ apply prefix_length in Hprefix. lia. }
eapply list_eq_same_length with (length l1); [done..|].
intros i x y _ ??. assert (l2 !! i = Some x) by eauto using prefix_lookup_Some.
congruence.
Qed.
Section prefix_ops.
Context `{!EqDecision A}.
Lemma max_prefix_fst l1 l2 :
l1 = (max_prefix l1 l2).2 ++ (max_prefix l1 l2).1.1.
Proof.
revert l2. induction l1; intros [|??]; simpl;
repeat case_decide; f_equal/=; auto.
Qed.
Lemma max_prefix_fst_alt l1 l2 k1 k2 k3 :
max_prefix l1 l2 = (k1, k2, k3) l1 = k3 ++ k1.
Proof.
intros. pose proof (max_prefix_fst l1 l2).
by destruct (max_prefix l1 l2) as [[]?]; simplify_eq.
Qed.
Lemma max_prefix_fst_prefix l1 l2 : (max_prefix l1 l2).2 `prefix_of` l1.
Proof. eexists. apply max_prefix_fst. Qed.
Lemma max_prefix_fst_prefix_alt l1 l2 k1 k2 k3 :
max_prefix l1 l2 = (k1, k2, k3) k3 `prefix_of` l1.
Proof. eexists. eauto using max_prefix_fst_alt. Qed.
Lemma max_prefix_snd l1 l2 :
l2 = (max_prefix l1 l2).2 ++ (max_prefix l1 l2).1.2.
Proof.
revert l2. induction l1; intros [|??]; simpl;
repeat case_decide; f_equal/=; auto.
Qed.
Lemma max_prefix_snd_alt l1 l2 k1 k2 k3 :
max_prefix l1 l2 = (k1, k2, k3) l2 = k3 ++ k2.
Proof.
intro. pose proof (max_prefix_snd l1 l2).
by destruct (max_prefix l1 l2) as [[]?]; simplify_eq.
Qed.
Lemma max_prefix_snd_prefix l1 l2 : (max_prefix l1 l2).2 `prefix_of` l2.
Proof. eexists. apply max_prefix_snd. Qed.
Lemma max_prefix_snd_prefix_alt l1 l2 k1 k2 k3 :
max_prefix l1 l2 = (k1,k2,k3) k3 `prefix_of` l2.
Proof. eexists. eauto using max_prefix_snd_alt. Qed.
Lemma max_prefix_max l1 l2 k :
k `prefix_of` l1 k `prefix_of` l2 k `prefix_of` (max_prefix l1 l2).2.
Proof.
intros [l1' ->] [l2' ->]. by induction k; simpl; repeat case_decide;
simpl; auto using prefix_nil, prefix_cons.
Qed.
Lemma max_prefix_max_alt l1 l2 k1 k2 k3 k :
max_prefix l1 l2 = (k1,k2,k3)
k `prefix_of` l1 k `prefix_of` l2 k `prefix_of` k3.
Proof.
intro. pose proof (max_prefix_max l1 l2 k).
by destruct (max_prefix l1 l2) as [[]?]; simplify_eq.
Qed.
Lemma max_prefix_max_snoc l1 l2 k1 k2 k3 x1 x2 :
max_prefix l1 l2 = (x1 :: k1, x2 :: k2, k3) x1 x2.
Proof.
intros Hl ->. destruct (prefix_snoc_not k3 x2).
eapply max_prefix_max_alt; eauto.
- rewrite (max_prefix_fst_alt _ _ _ _ _ Hl).
apply prefix_app, prefix_cons, prefix_nil.
- rewrite (max_prefix_snd_alt _ _ _ _ _ Hl).
apply prefix_app, prefix_cons, prefix_nil.
Qed.
End prefix_ops.
Lemma prefix_suffix_reverse l1 l2 :
l1 `prefix_of` l2 reverse l1 `suffix_of` reverse l2.
Proof.
split; intros [k E]; exists (reverse k).
- by rewrite E, reverse_app.
- by rewrite <-(reverse_involutive l2), E, reverse_app, reverse_involutive.
Qed.
Lemma suffix_prefix_reverse l1 l2 :
l1 `suffix_of` l2 reverse l1 `prefix_of` reverse l2.
Proof. by rewrite prefix_suffix_reverse, !reverse_involutive. Qed.
Lemma suffix_nil l : [] `suffix_of` l.
Proof. exists l. by rewrite (right_id_L [] (++)). Qed.
Lemma suffix_nil_inv l : l `suffix_of` [] l = [].
Proof. by intros [[|?] ?]; simplify_list_eq. Qed.
Lemma suffix_cons_nil_inv x l : ¬x :: l `suffix_of` [].
Proof. by intros [[] ?]. Qed.
Lemma suffix_snoc l1 l2 x :
l1 `suffix_of` l2 l1 ++ [x] `suffix_of` l2 ++ [x].
Proof. intros [k ->]. exists k. by rewrite (assoc_L (++)). Qed.
Lemma suffix_snoc_alt x y l1 l2 :
x = y l1 `suffix_of` l2 l1 ++ [x] `suffix_of` l2 ++ [y].
Proof. intros ->. apply suffix_snoc. Qed.
Lemma suffix_app l1 l2 k : l1 `suffix_of` l2 l1 ++ k `suffix_of` l2 ++ k.
Proof. intros [k' ->]. exists k'. by rewrite (assoc_L (++)). Qed.
Lemma suffix_app_alt l1 l2 k1 k2 :
k1 = k2 l1 `suffix_of` l2 l1 ++ k1 `suffix_of` l2 ++ k2.
Proof. intros ->. apply suffix_app. Qed.
Lemma suffix_snoc_inv_1 x y l1 l2 :
l1 ++ [x] `suffix_of` l2 ++ [y] x = y.
Proof. intros [k' E]. rewrite (assoc_L (++)) in E. by simplify_list_eq. Qed.
Lemma suffix_snoc_inv_2 x y l1 l2 :
l1 ++ [x] `suffix_of` l2 ++ [y] l1 `suffix_of` l2.
Proof.
intros [k' E]. exists k'. rewrite (assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma suffix_app_inv l1 l2 k :
l1 ++ k `suffix_of` l2 ++ k l1 `suffix_of` l2.
Proof.
intros [k' E]. exists k'. rewrite (assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma suffix_cons_l l1 l2 x : x :: l1 `suffix_of` l2 l1 `suffix_of` l2.
Proof. intros [k ->]. exists (k ++ [x]). by rewrite <-(assoc_L (++)). Qed.
Lemma suffix_app_l l1 l2 l3 : l3 ++ l1 `suffix_of` l2 l1 `suffix_of` l2.
Proof. intros [k ->]. exists (k ++ l3). by rewrite <-(assoc_L (++)). Qed.
Lemma suffix_cons_r l1 l2 x : l1 `suffix_of` l2 l1 `suffix_of` x :: l2.
Proof. intros [k ->]. by exists (x :: k). Qed.
Lemma suffix_app_r l1 l2 l3 : l1 `suffix_of` l2 l1 `suffix_of` l3 ++ l2.
Proof. intros [k ->]. exists (l3 ++ k). by rewrite (assoc_L (++)). Qed.
Lemma suffix_drop l n : drop n l `suffix_of` l.
Proof. rewrite <-(take_drop n l) at 2. apply suffix_app_r. done. Qed.
Lemma suffix_cons_inv l1 l2 x y :
x :: l1 `suffix_of` y :: l2 x :: l1 = y :: l2 x :: l1 `suffix_of` l2.
Proof.
intros [[|? k] E]; [by left|]. right. simplify_eq/=. by apply suffix_app_r.
Qed.
Lemma suffix_lookup_lt l1 l2 i :
i < length l1
l1 `suffix_of` l2
l1 !! i = l2 !! (i + (length l2 - length l1)).
Proof.
intros Hi [k ->]. rewrite length_app, lookup_app_r by lia. f_equal; lia.
Qed.
Lemma suffix_lookup_Some l1 l2 i x :
l1 !! i = Some x
l1 `suffix_of` l2
l2 !! (i + (length l2 - length l1)) = Some x.
Proof. intros. by rewrite <-suffix_lookup_lt by eauto using lookup_lt_Some. Qed.
Lemma suffix_length l1 l2 : l1 `suffix_of` l2 length l1 length l2.
Proof. intros [? ->]. rewrite length_app. lia. Qed.
Lemma suffix_cons_not x l : ¬x :: l `suffix_of` l.
Proof. intros [??]. discriminate_list. Qed.
Lemma elem_of_suffix l1 l2 x :
x l1 l1 `suffix_of` l2 x l2.
Proof. intros Hin [l' ->]. apply elem_of_app. by right. Qed.
(* [suffix] is not a total order, but [l1] and [l2] are always comparable if
they are both suffixes of some [l3]. *)
Lemma suffix_weak_total l1 l2 l3 :
l1 `suffix_of` l3 l2 `suffix_of` l3 l1 `suffix_of` l2 l2 `suffix_of` l1.
Proof.
intros [k1 Hl1] [k2 Hl2]. rewrite Hl1 in Hl2.
apply app_eq_inv in Hl2 as [(k&?&?)|(k&?&?)]; [left|right]; exists k; eauto.
Qed.
Global Instance suffix_dec `{!EqDecision A} : RelDecision (@suffix A).
Proof.
refine (λ l1 l2, cast_if (decide_rel prefix (reverse l1) (reverse l2)));
abstract (by rewrite suffix_prefix_reverse).
Defined.
Lemma suffix_not_elem_of_app_cons_inv x y l1 l2 k1 k2 :
x k2 y l2
(l1 ++ x :: l2) `suffix_of` (k1 ++ y :: k2)
l1 `suffix_of` k1 x = y l2 = k2.
Proof.
intros Hin1 Hin2 [k Hle]. rewrite (assoc_L (++)) in Hle.
apply not_elem_of_app_cons_inv_r in Hle; [|done..]. unfold suffix. naive_solver.
Qed.
Lemma suffix_length_eq l1 l2 :
l1 `suffix_of` l2 length l2 length l1 l1 = l2.
Proof.
intros. apply (inj reverse), prefix_length_eq.
- by apply suffix_prefix_reverse.
- by rewrite !length_reverse.
Qed.
Section max_suffix.
Context `{!EqDecision A}.
Lemma max_suffix_fst l1 l2 :
l1 = (max_suffix l1 l2).1.1 ++ (max_suffix l1 l2).2.
Proof.
rewrite <-(reverse_involutive l1) at 1.
rewrite (max_prefix_fst (reverse l1) (reverse l2)). unfold max_suffix.
destruct (max_prefix (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
by rewrite reverse_app.
Qed.
Lemma max_suffix_fst_alt l1 l2 k1 k2 k3 :
max_suffix l1 l2 = (k1, k2, k3) l1 = k1 ++ k3.
Proof.
intro. pose proof (max_suffix_fst l1 l2).
by destruct (max_suffix l1 l2) as [[]?]; simplify_eq.
Qed.
Lemma max_suffix_fst_suffix l1 l2 : (max_suffix l1 l2).2 `suffix_of` l1.
Proof. eexists. apply max_suffix_fst. Qed.
Lemma max_suffix_fst_suffix_alt l1 l2 k1 k2 k3 :
max_suffix l1 l2 = (k1, k2, k3) k3 `suffix_of` l1.
Proof. eexists. eauto using max_suffix_fst_alt. Qed.
Lemma max_suffix_snd l1 l2 :
l2 = (max_suffix l1 l2).1.2 ++ (max_suffix l1 l2).2.
Proof.
rewrite <-(reverse_involutive l2) at 1.
rewrite (max_prefix_snd (reverse l1) (reverse l2)). unfold max_suffix.
destruct (max_prefix (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
by rewrite reverse_app.
Qed.
Lemma max_suffix_snd_alt l1 l2 k1 k2 k3 :
max_suffix l1 l2 = (k1,k2,k3) l2 = k2 ++ k3.
Proof.
intro. pose proof (max_suffix_snd l1 l2).
by destruct (max_suffix l1 l2) as [[]?]; simplify_eq.
Qed.
Lemma max_suffix_snd_suffix l1 l2 : (max_suffix l1 l2).2 `suffix_of` l2.
Proof. eexists. apply max_suffix_snd. Qed.
Lemma max_suffix_snd_suffix_alt l1 l2 k1 k2 k3 :
max_suffix l1 l2 = (k1,k2,k3) k3 `suffix_of` l2.
Proof. eexists. eauto using max_suffix_snd_alt. Qed.
Lemma max_suffix_max l1 l2 k :
k `suffix_of` l1 k `suffix_of` l2 k `suffix_of` (max_suffix l1 l2).2.
Proof.
generalize (max_prefix_max (reverse l1) (reverse l2)).
rewrite !suffix_prefix_reverse. unfold max_suffix.
destruct (max_prefix (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
rewrite reverse_involutive. auto.
Qed.
Lemma max_suffix_max_alt l1 l2 k1 k2 k3 k :
max_suffix l1 l2 = (k1, k2, k3)
k `suffix_of` l1 k `suffix_of` l2 k `suffix_of` k3.
Proof.
intro. pose proof (max_suffix_max l1 l2 k).
by destruct (max_suffix l1 l2) as [[]?]; simplify_eq.
Qed.
Lemma max_suffix_max_snoc l1 l2 k1 k2 k3 x1 x2 :
max_suffix l1 l2 = (k1 ++ [x1], k2 ++ [x2], k3) x1 x2.
Proof.
intros Hl ->. destruct (suffix_cons_not x2 k3).
eapply max_suffix_max_alt; eauto.
- rewrite (max_suffix_fst_alt _ _ _ _ _ Hl).
by apply (suffix_app [x2]), suffix_app_r.
- rewrite (max_suffix_snd_alt _ _ _ _ _ Hl).
by apply (suffix_app [x2]), suffix_app_r.
Qed.
End max_suffix.
(** ** Properties of the [sublist] predicate *)
Lemma sublist_length l1 l2 : l1 `sublist_of` l2 length l1 length l2.
Proof. induction 1; simpl; auto with arith. Qed.
Lemma sublist_nil_l l : [] `sublist_of` l.
Proof. induction l; try constructor; auto. Qed.
Lemma sublist_nil_r l : l `sublist_of` [] l = [].
Proof. split; [by inv 1|]. intros ->. constructor. Qed.
Lemma sublist_app l1 l2 k1 k2 :
l1 `sublist_of` l2 k1 `sublist_of` k2 l1 ++ k1 `sublist_of` l2 ++ k2.
Proof. induction 1; simpl; try constructor; auto. Qed.
Lemma sublist_inserts_l k l1 l2 : l1 `sublist_of` l2 l1 `sublist_of` k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma sublist_inserts_r k l1 l2 : l1 `sublist_of` l2 l1 `sublist_of` l2 ++ k.
Proof. induction 1; simpl; try constructor; auto using sublist_nil_l. Qed.
Lemma sublist_cons_r x l k :
l `sublist_of` x :: k l `sublist_of` k l', l = x :: l' l' `sublist_of` k.
Proof. split; [inv 1; eauto|]. intros [?|(?&->&?)]; constructor; auto. Qed.
Lemma sublist_cons_l x l k :
x :: l `sublist_of` k k1 k2, k = k1 ++ x :: k2 l `sublist_of` k2.
Proof.
split.
- intros Hlk. induction k as [|y k IH]; inv Hlk.
+ eexists [], k. by repeat constructor.
+ destruct IH as (k1&k2&->&?); auto. by exists (y :: k1), k2.
- intros (k1&k2&->&?). by apply sublist_inserts_l, sublist_skip.
Qed.
Lemma sublist_app_r l k1 k2 :
l `sublist_of` k1 ++ k2
l1 l2, l = l1 ++ l2 l1 `sublist_of` k1 l2 `sublist_of` k2.
Proof.
split.
- revert l k2. induction k1 as [|y k1 IH]; intros l k2; simpl.
{ eexists [], l. by repeat constructor. }
rewrite sublist_cons_r. intros [?|(l' & ? &?)]; subst.
+ destruct (IH l k2) as (l1&l2&?&?&?); trivial; subst.
exists l1, l2. auto using sublist_cons.
+ destruct (IH l' k2) as (l1&l2&?&?&?); trivial; subst.
exists (y :: l1), l2. auto using sublist_skip.
- intros (?&?&?&?&?); subst. auto using sublist_app.
Qed.
Lemma sublist_app_l l1 l2 k :
l1 ++ l2 `sublist_of` k
k1 k2, k = k1 ++ k2 l1 `sublist_of` k1 l2 `sublist_of` k2.
Proof.
split.
- revert l2 k. induction l1 as [|x l1 IH]; intros l2 k; simpl.
{ eexists [], k. by repeat constructor. }
rewrite sublist_cons_l. intros (k1 & k2 &?&?); subst.
destruct (IH l2 k2) as (h1 & h2 &?&?&?); trivial; subst.
exists (k1 ++ x :: h1), h2. rewrite <-(assoc_L (++)).
auto using sublist_inserts_l, sublist_skip.
- intros (?&?&?&?&?); subst. auto using sublist_app.
Qed.
Lemma sublist_app_inv_l k l1 l2 : k ++ l1 `sublist_of` k ++ l2 l1 `sublist_of` l2.
Proof.
induction k as [|y k IH]; simpl; [done |].
rewrite sublist_cons_r. intros [Hl12|(?&?&?)]; [|simplify_eq; eauto].
rewrite sublist_cons_l in Hl12. destruct Hl12 as (k1&k2&Hk&?).
apply IH. rewrite Hk. eauto using sublist_inserts_l, sublist_cons.
Qed.
Lemma sublist_app_inv_r k l1 l2 : l1 ++ k `sublist_of` l2 ++ k l1 `sublist_of` l2.
Proof.
revert l1 l2. induction k as [|y k IH]; intros l1 l2.
{ by rewrite !(right_id_L [] (++)). }
intros. opose proof* (IH (l1 ++ [_]) (l2 ++ [_])) as Hl12.
{ by rewrite <-!(assoc_L (++)). }
rewrite sublist_app_l in Hl12. destruct Hl12 as (k1&k2&E&?&Hk2).
destruct k2 as [|z k2] using rev_ind; [inv Hk2|].
rewrite (assoc_L (++)) in E; simplify_list_eq.
eauto using sublist_inserts_r.
Qed.
Global Instance: PartialOrder (@sublist A).
Proof.
split; [split|].
- intros l. induction l; constructor; auto.
- intros l1 l2 l3 Hl12. revert l3. induction Hl12.
+ auto using sublist_nil_l.
+ intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
eauto using sublist_inserts_l, sublist_skip.
+ intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
eauto using sublist_inserts_l, sublist_cons.
- intros l1 l2 Hl12 Hl21. apply sublist_length in Hl21.
induction Hl12 as [| |??? Hl12]; f_equal/=; auto with arith.
apply sublist_length in Hl12. lia.
Qed.
Lemma sublist_take l i : take i l `sublist_of` l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_inserts_r. Qed.
Lemma sublist_drop l i : drop i l `sublist_of` l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_inserts_l. Qed.
Lemma sublist_delete l i : delete i l `sublist_of` l.
Proof. revert i. by induction l; intros [|?]; simpl; constructor. Qed.
Lemma sublist_foldr_delete l is : foldr delete l is `sublist_of` l.
Proof.
induction is as [|i is IH]; simpl; [done |].
trans (foldr delete l is); auto using sublist_delete.
Qed.
Lemma sublist_alt l1 l2 : l1 `sublist_of` l2 is, l1 = foldr delete l2 is.
Proof.
split; [|intros [is ->]; apply sublist_foldr_delete].
intros Hl12. cut ( k, is, k ++ l1 = foldr delete (k ++ l2) is).
{ intros help. apply (help []). }
induction Hl12 as [|x l1 l2 _ IH|x l1 l2 _ IH]; intros k.
- by eexists [].
- destruct (IH (k ++ [x])) as [is His]. exists is.
by rewrite <-!(assoc_L (++)) in His.
- destruct (IH k) as [is His]. exists (is ++ [length k]).
rewrite fold_right_app. simpl. by rewrite delete_middle.
Qed.
Lemma Permutation_sublist l1 l2 l3 :
l1 l2 l2 `sublist_of` l3 l4, l1 `sublist_of` l4 l4 l3.
Proof.
intros Hl1l2. revert l3.
induction Hl1l2 as [|x l1 l2 ? IH|x y l1|l1 l1' l2 ? IH1 ? IH2].
- intros l3. by exists l3.
- intros l3. rewrite sublist_cons_l. intros (l3'&l3''&?&?); subst.
destruct (IH l3'') as (l4&?&Hl4); auto. exists (l3' ++ x :: l4).
split.
+ by apply sublist_inserts_l, sublist_skip.
+ by rewrite Hl4.
- intros l3. rewrite sublist_cons_l. intros (l3'&l3''&?& Hl3); subst.
rewrite sublist_cons_l in Hl3. destruct Hl3 as (l5'&l5''&?& Hl5); subst.
exists (l3' ++ y :: l5' ++ x :: l5''). split.
+ by do 2 apply sublist_inserts_l, sublist_skip.
+ by rewrite !Permutation_middle, Permutation_swap.
- intros l3 ?. destruct (IH2 l3) as (l3'&?&?); trivial.
destruct (IH1 l3') as (l3'' &?&?); trivial. exists l3''.
split; [done|]. etrans; eauto.
Qed.
Lemma sublist_Permutation l1 l2 l3 :
l1 `sublist_of` l2 l2 l3 l4, l1 l4 l4 `sublist_of` l3.
Proof.
intros Hl1l2 Hl2l3. revert l1 Hl1l2.
induction Hl2l3 as [|x l2 l3 ? IH|x y l2|l2 l2' l3 ? IH1 ? IH2].
- intros l1. by exists l1.
- intros l1. rewrite sublist_cons_r. intros [?|(l1'&l1''&?)]; subst.
{ destruct (IH l1) as (l4&?&?); trivial.
exists l4. split.
- done.
- by constructor. }
destruct (IH l1') as (l4&?&Hl4); auto. exists (x :: l4).
split; [ by constructor | by constructor ].
- intros l1. rewrite sublist_cons_r. intros [Hl1|(l1'&l1''&Hl1)]; subst.
{ exists l1. split; [done|]. rewrite sublist_cons_r in Hl1.
destruct Hl1 as [?|(l1'&?&?)]; subst; by repeat constructor. }
rewrite sublist_cons_r in Hl1. destruct Hl1 as [?|(l1''&?&?)]; subst.
+ exists (y :: l1'). by repeat constructor.
+ exists (x :: y :: l1''). by repeat constructor.
- intros l1 ?. destruct (IH1 l1) as (l3'&?&?); trivial.
destruct (IH2 l3') as (l3'' &?&?); trivial. exists l3''.
split; [|done]. etrans; eauto.
Qed.
(** Properties of the [submseteq] predicate *)
Lemma submseteq_length l1 l2 : l1 ⊆+ l2 length l1 length l2.
Proof. induction 1; simpl; auto with lia. Qed.
Lemma submseteq_nil_l l : [] ⊆+ l.
Proof. induction l; constructor; auto. Qed.
Lemma submseteq_nil_r l : l ⊆+ [] l = [].
Proof.
split; [|intros ->; constructor].
intros Hl. apply submseteq_length in Hl. destruct l; simpl in *; auto with lia.
Qed.
Global Instance: PreOrder (@submseteq A).
Proof.
split.
- intros l. induction l; constructor; auto.
- red. apply submseteq_trans.
Qed.
Lemma Permutation_submseteq l1 l2 : l1 l2 l1 ⊆+ l2.
Proof. induction 1; econstructor; eauto. Qed.
Lemma sublist_submseteq l1 l2 : l1 `sublist_of` l2 l1 ⊆+ l2.
Proof. induction 1; constructor; auto. Qed.
Lemma submseteq_Permutation l1 l2 : l1 ⊆+ l2 k, l2 l1 ++ k.
Proof.
induction 1 as
[|x y l ? [k Hk]| |x l1 l2 ? [k Hk]|l1 l2 l3 ? [k Hk] ? [k' Hk']].
- by eexists [].
- exists k. by rewrite Hk.
- eexists []. rewrite (right_id_L [] (++)). by constructor.
- exists (x :: k). by rewrite Hk, Permutation_middle.
- exists (k ++ k'). by rewrite Hk', Hk, (assoc_L (++)).
Qed.
Global Instance: Proper (() ==> () ==> iff) (@submseteq A).
Proof.
intros l1 l2 ? k1 k2 ?. split; intros.
- trans l1; [by apply Permutation_submseteq|].
trans k1; [done|]. by apply Permutation_submseteq.
- trans l2; [by apply Permutation_submseteq|].
trans k2; [done|]. by apply Permutation_submseteq.
Qed.
Lemma submseteq_length_Permutation l1 l2 :
l1 ⊆+ l2 length l2 length l1 l1 l2.
Proof.
intros Hsub Hlen. destruct (submseteq_Permutation l1 l2) as [[|??] Hk]; auto.
- by rewrite Hk, (right_id_L [] (++)).
- rewrite Hk, length_app in Hlen. simpl in *; lia.
Qed.
Global Instance: AntiSymm () (@submseteq A).
Proof.
intros l1 l2 ??.
apply submseteq_length_Permutation; auto using submseteq_length.
Qed.
Lemma elem_of_submseteq l k x : x l l ⊆+ k x k.
Proof. intros ? [l' ->]%submseteq_Permutation. apply elem_of_app; auto. Qed.
Lemma lookup_submseteq l k i x :
l !! i = Some x
l ⊆+ k
j, k !! j = Some x.
Proof.
intros Hsub Hlook.
eapply elem_of_list_lookup_1, elem_of_submseteq;
eauto using elem_of_list_lookup_2.
Qed.
Lemma submseteq_take l i : take i l ⊆+ l.
Proof. auto using sublist_take, sublist_submseteq. Qed.
Lemma submseteq_drop l i : drop i l ⊆+ l.
Proof. auto using sublist_drop, sublist_submseteq. Qed.
Lemma submseteq_delete l i : delete i l ⊆+ l.
Proof. auto using sublist_delete, sublist_submseteq. Qed.
Lemma submseteq_foldr_delete l is : foldr delete l is `sublist_of` l.
Proof. auto using sublist_foldr_delete, sublist_submseteq. Qed.
Lemma submseteq_sublist_l l1 l3 : l1 ⊆+ l3 l2, l1 `sublist_of` l2 l2 l3.
Proof.
split.
{ intros Hl13. elim Hl13; clear l1 l3 Hl13.
- by eexists [].
- intros x l1 l3 ? (l2&?&?). exists (x :: l2). by repeat constructor.
- intros x y l. exists (y :: x :: l). by repeat constructor.
- intros x l1 l3 ? (l2&?&?). exists (x :: l2). by repeat constructor.
- intros l1 l3 l5 ? (l2&?&?) ? (l4&?&?).
destruct (Permutation_sublist l2 l3 l4) as (l3'&?&?); trivial.
exists l3'. split; etrans; eauto. }
intros (l2&?&?).
trans l2; auto using sublist_submseteq, Permutation_submseteq.
Qed.
Lemma submseteq_sublist_r l1 l3 :
l1 ⊆+ l3 l2, l1 l2 l2 `sublist_of` l3.
Proof.
rewrite submseteq_sublist_l.
split; intros (l2&?&?); eauto using sublist_Permutation, Permutation_sublist.
Qed.
Lemma submseteq_inserts_l k l1 l2 : l1 ⊆+ l2 l1 ⊆+ k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma submseteq_inserts_r k l1 l2 : l1 ⊆+ l2 l1 ⊆+ l2 ++ k.
Proof. rewrite (comm (++)). apply submseteq_inserts_l. Qed.
Lemma submseteq_skips_l k l1 l2 : l1 ⊆+ l2 k ++ l1 ⊆+ k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma submseteq_skips_r k l1 l2 : l1 ⊆+ l2 l1 ++ k ⊆+ l2 ++ k.
Proof. rewrite !(comm (++) _ k). apply submseteq_skips_l. Qed.
Lemma submseteq_app l1 l2 k1 k2 : l1 ⊆+ l2 k1 ⊆+ k2 l1 ++ k1 ⊆+ l2 ++ k2.
Proof. trans (l1 ++ k2); auto using submseteq_skips_l, submseteq_skips_r. Qed.
Lemma submseteq_cons_r x l k :
l ⊆+ x :: k l ⊆+ k l', l x :: l' l' ⊆+ k.
Proof.
split.
- rewrite submseteq_sublist_r. intros (l'&E&Hl').
rewrite sublist_cons_r in Hl'. destruct Hl' as [?|(?&?&?)]; subst.
+ left. rewrite E. eauto using sublist_submseteq.
+ right. eauto using sublist_submseteq.
- intros [?|(?&E&?)]; [|rewrite E]; by constructor.
Qed.
Lemma submseteq_cons_l x l k : x :: l ⊆+ k k', k x :: k' l ⊆+ k'.
Proof.
split.
- rewrite submseteq_sublist_l. intros (l'&Hl'&E).
rewrite sublist_cons_l in Hl'. destruct Hl' as (k1&k2&?&?); subst.
exists (k1 ++ k2). split; eauto using submseteq_inserts_l, sublist_submseteq.
by rewrite Permutation_middle.
- intros (?&E&?). rewrite E. by constructor.
Qed.
Lemma submseteq_app_r l k1 k2 :
l ⊆+ k1 ++ k2 l1 l2, l l1 ++ l2 l1 ⊆+ k1 l2 ⊆+ k2.
Proof.
split.
- rewrite submseteq_sublist_r. intros (l'&E&Hl').
rewrite sublist_app_r in Hl'. destruct Hl' as (l1&l2&?&?&?); subst.
exists l1, l2. eauto using sublist_submseteq.
- intros (?&?&E&?&?). rewrite E. eauto using submseteq_app.
Qed.
Lemma submseteq_app_l l1 l2 k :
l1 ++ l2 ⊆+ k k1 k2, k k1 ++ k2 l1 ⊆+ k1 l2 ⊆+ k2.
Proof.
split.
- rewrite submseteq_sublist_l. intros (l'&Hl'&E).
rewrite sublist_app_l in Hl'. destruct Hl' as (k1&k2&?&?&?); subst.
exists k1, k2. split; [done|]. eauto using sublist_submseteq.
- intros (?&?&E&?&?). rewrite E. eauto using submseteq_app.
Qed.
Lemma submseteq_app_inv_l l1 l2 k : k ++ l1 ⊆+ k ++ l2 l1 ⊆+ l2.
Proof.
induction k as [|y k IH]; simpl; [done |]. rewrite submseteq_cons_l.
intros (?&E%(inj (cons y))&?). apply IH. by rewrite E.
Qed.
Lemma submseteq_app_inv_r l1 l2 k : l1 ++ k ⊆+ l2 ++ k l1 ⊆+ l2.
Proof. rewrite <-!(comm (++) k). apply submseteq_app_inv_l. Qed.
Lemma submseteq_cons_middle x l k1 k2 : l ⊆+ k1 ++ k2 x :: l ⊆+ k1 ++ x :: k2.
Proof. rewrite <-Permutation_middle. by apply submseteq_skip. Qed.
Lemma submseteq_app_middle l1 l2 k1 k2 :
l2 ⊆+ k1 ++ k2 l1 ++ l2 ⊆+ k1 ++ l1 ++ k2.
Proof.
rewrite !(assoc (++)), (comm (++) k1 l1), <-(assoc_L (++)).
by apply submseteq_skips_l.
Qed.
Lemma submseteq_middle l k1 k2 : l ⊆+ k1 ++ l ++ k2.
Proof. by apply submseteq_inserts_l, submseteq_inserts_r. Qed.
Lemma NoDup_submseteq l k : NoDup l ( x, x l x k) l ⊆+ k.
Proof.
intros Hl. revert k. induction Hl as [|x l Hx ? IH].
{ intros k Hk. by apply submseteq_nil_l. }
intros k Hlk. destruct (elem_of_list_split k x) as (l1&l2&?); subst.
{ apply Hlk. by constructor. }
rewrite <-Permutation_middle. apply submseteq_skip, IH.
intros y Hy. rewrite elem_of_app.
specialize (Hlk y). rewrite elem_of_app, !elem_of_cons in Hlk.
by destruct Hlk as [?|[?|?]]; subst; eauto.
Qed.
Lemma NoDup_Permutation l k : NoDup l NoDup k ( x, x l x k) l k.
Proof.
intros. apply (anti_symm submseteq); apply NoDup_submseteq; naive_solver.
Qed.
Lemma submseteq_insert l1 l2 i j x y :
l1 !! i = Some x
l2 !! j = Some x
l1 ⊆+ l2
(<[i := y]> l1) ⊆+ (<[j := y]> l2).
Proof.
intros ?? Hsub.
rewrite !insert_take_drop,
<-!Permutation_middle by eauto using lookup_lt_Some.
rewrite <-(take_drop_middle l1 i x), <-(take_drop_middle l2 j x),
<-!Permutation_middle in Hsub by done.
by apply submseteq_skip, (submseteq_app_inv_l _ _ [x]).
Qed.
Lemma singleton_submseteq_l l x :
[x] ⊆+ l x l.
Proof.
split.
- intros Hsub. eapply elem_of_submseteq; [|done].
apply elem_of_list_singleton. done.
- intros (l1&l2&->)%elem_of_list_split.
apply submseteq_cons_middle, submseteq_nil_l.
Qed.
Lemma singleton_submseteq x y :
[x] ⊆+ [y] x = y.
Proof. rewrite singleton_submseteq_l. apply elem_of_list_singleton. Qed.
Section submseteq_dec.
Context `{!EqDecision A}.
Local Program Fixpoint elem_of_or_Permutation x l :
(x l) + { k | l x :: k } :=
match l with
| [] => inl _
| y :: l =>
if decide (x = y) then inr (l _) else
match elem_of_or_Permutation x l return _ with
| inl _ => inl _ | inr (k _) => inr ((y :: k) _)
end
end.
Next Obligation. inv 2. Qed.
Next Obligation. naive_solver. Qed.
Next Obligation. intros ? x y l <- ??. by rewrite not_elem_of_cons. Qed.
Next Obligation.
intros ? x y l <- ? _ k Hl. simpl. by rewrite Hl, Permutation_swap.
Qed.
Global Program Instance submseteq_dec : RelDecision (@submseteq A) :=
fix go l1 l2 :=
match l1 with
| [] => left _
| x :: l1 =>
match elem_of_or_Permutation x l2 return _ with
| inl _ => right _
| inr (l2 _) => cast_if (go l1 l2)
end
end.
Next Obligation. intros _ l1 l2 _. apply submseteq_nil_l. Qed.
Next Obligation.
intros _ ? l2 x l1 <- Hx Hxl1. eapply Hx, elem_of_submseteq, Hxl1. by left.
Qed.
Next Obligation. intros _ ?? x l1 <- _ l2 -> Hl. by apply submseteq_skip. Qed.
Next Obligation.
intros _ ?? x l1 <- _ l2 -> Hl (l2' & Hl2%(inj _) & ?)%submseteq_cons_l.
apply Hl. by rewrite Hl2.
Qed.
Global Instance Permutation_dec : RelDecision (@{A}).
Proof using Type*.
refine (λ l1 l2, cast_if_and
(decide (l1 ⊆+ l2)) (decide (length l2 length l1)));
[by apply submseteq_length_Permutation
|abstract (intros He; by rewrite He in *)..].
Defined.
End submseteq_dec.
(** ** Properties of the [Forall] and [Exists] predicate *)
Lemma Forall_Exists_dec (P Q : A Prop) (dec : x, {P x} + {Q x}) :
l, {Forall P l} + {Exists Q l}.
Proof.
refine (
fix go l :=
match l return {Forall P l} + {Exists Q l} with
| [] => left _
| x :: l => cast_if_and (dec x) (go l)
end); clear go; intuition.
Defined.
(** Export the Coq stdlib constructors under different names,
because we use [Forall_nil] and [Forall_cons] for a version with a biimplication. *)
Definition Forall_nil_2 := @Forall_nil A.
Definition Forall_cons_2 := @Forall_cons A.
Global Instance Forall_proper:
Proper (pointwise_relation _ () ==> (=) ==> ()) (@Forall A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Global Instance Exists_proper:
Proper (pointwise_relation _ () ==> (=) ==> ()) (@Exists A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Section Forall_Exists.
Context (P : A Prop).
Lemma Forall_forall l : Forall P l x, x l P x.
Proof.
split; [induction 1; inv 1; auto|].
intros Hin; induction l as [|x l IH]; constructor; [apply Hin; constructor|].
apply IH. intros ??. apply Hin. by constructor.
Qed.
Lemma Forall_nil : Forall P [] True.
Proof. done. Qed.
Lemma Forall_cons_1 x l : Forall P (x :: l) P x Forall P l.
Proof. by inv 1. Qed.
Lemma Forall_cons x l : Forall P (x :: l) P x Forall P l.
Proof. split; [by inv 1|]. intros [??]. by constructor. Qed.
Lemma Forall_singleton x : Forall P [x] P x.
Proof. rewrite Forall_cons, Forall_nil; tauto. Qed.
Lemma Forall_app_2 l1 l2 : Forall P l1 Forall P l2 Forall P (l1 ++ l2).
Proof. induction 1; simpl; auto. Qed.
Lemma Forall_app l1 l2 : Forall P (l1 ++ l2) Forall P l1 Forall P l2.
Proof.
split; [induction l1; inv 1; naive_solver|].
intros [??]; auto using Forall_app_2.
Qed.
Lemma Forall_true l : ( x, P x) Forall P l.
Proof. intros ?. induction l; auto. Defined.
Lemma Forall_impl (Q : A Prop) l :
Forall P l ( x, P x Q x) Forall Q l.
Proof. intros H ?. induction H; auto. Defined.
Lemma Forall_iff l (Q : A Prop) :
( x, P x Q x) Forall P l Forall Q l.
Proof. intros H. apply Forall_proper. { red; apply H. } done. Qed.
Lemma Forall_not l : length l 0 Forall (not P) l ¬Forall P l.
Proof. by destruct 2; inv 1. Qed.
Lemma Forall_and {Q} l : Forall (λ x, P x Q x) l Forall P l Forall Q l.
Proof.
split; [induction 1; constructor; naive_solver|].
intros [Hl Hl']; revert Hl'; induction Hl; inv 1; auto.
Qed.
Lemma Forall_and_l {Q} l : Forall (λ x, P x Q x) l Forall P l.
Proof. rewrite Forall_and; tauto. Qed.
Lemma Forall_and_r {Q} l : Forall (λ x, P x Q x) l Forall Q l.
Proof. rewrite Forall_and; tauto. Qed.
Lemma Forall_delete l i : Forall P l Forall P (delete i l).
Proof. intros H. revert i. by induction H; intros [|i]; try constructor. Qed.
Lemma Forall_lookup l : Forall P l i x, l !! i = Some x P x.
Proof.
rewrite Forall_forall. setoid_rewrite elem_of_list_lookup. naive_solver.
Qed.
Lemma Forall_lookup_total `{!Inhabited A} l :
Forall P l i, i < length l P (l !!! i).
Proof. rewrite Forall_lookup. setoid_rewrite list_lookup_alt. naive_solver. Qed.
Lemma Forall_lookup_1 l i x : Forall P l l !! i = Some x P x.
Proof. rewrite Forall_lookup. eauto. Qed.
Lemma Forall_lookup_total_1 `{!Inhabited A} l i :
Forall P l i < length l P (l !!! i).
Proof. rewrite Forall_lookup_total. eauto. Qed.
Lemma Forall_lookup_2 l : ( i x, l !! i = Some x P x) Forall P l.
Proof. by rewrite Forall_lookup. Qed.
Lemma Forall_lookup_total_2 `{!Inhabited A} l :
( i, i < length l P (l !!! i)) Forall P l.
Proof. by rewrite Forall_lookup_total. Qed.
Lemma Forall_nth d l : Forall P l i, i < length l P (nth i l d).
Proof.
rewrite Forall_lookup. split.
- intros Hl ? [x Hl']%lookup_lt_is_Some_2.
rewrite (nth_lookup_Some _ _ _ _ Hl'). by eapply Hl.
- intros Hl i x Hl'. specialize (Hl _ (lookup_lt_Some _ _ _ Hl')).
by rewrite (nth_lookup_Some _ _ _ _ Hl') in Hl.
Qed.
Lemma Forall_reverse l : Forall P (reverse l) Forall P l.
Proof.
induction l as [|x l IH]; simpl; [done|].
rewrite reverse_cons, Forall_cons, Forall_app, Forall_singleton. naive_solver.
Qed.
Lemma Forall_tail l : Forall P l Forall P (tail l).
Proof. destruct 1; simpl; auto. Qed.
Lemma Forall_alter f l i :
Forall P l ( x, l !! i = Some x P x P (f x)) Forall P (alter f i l).
Proof.
intros Hl. revert i. induction Hl; simpl; intros [|i]; constructor; auto.
Qed.
Lemma Forall_alter_inv f l i :
Forall P (alter f i l) ( x, l !! i = Some x P (f x) P x) Forall P l.
Proof.
revert i. induction l; intros [|?]; simpl;
inv 1; constructor; eauto.
Qed.
Lemma Forall_insert l i x : Forall P l P x Forall P (<[i:=x]>l).
Proof. rewrite list_insert_alter; auto using Forall_alter. Qed.
Lemma Forall_inserts l i k :
Forall P l Forall P k Forall P (list_inserts i k l).
Proof.
intros Hl Hk; revert i.
induction Hk; simpl; auto using Forall_insert.
Qed.
Lemma Forall_replicate n x : P x Forall P (replicate n x).
Proof. induction n; simpl; constructor; auto. Qed.
Lemma Forall_replicate_eq n (x : A) : Forall (x =.) (replicate n x).
Proof using -(P). induction n; simpl; constructor; auto. Qed.
Lemma Forall_take n l : Forall P l Forall P (take n l).
Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
Lemma Forall_drop n l : Forall P l Forall P (drop n l).
Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
Lemma Forall_rev_ind (Q : list A Prop) :
Q [] ( x l, P x Forall P l Q l Q (l ++ [x]))
l, Forall P l Q l.
Proof.
intros ?? l. induction l using rev_ind; auto.
rewrite Forall_app, Forall_singleton; intros [??]; auto.
Qed.
Lemma Exists_exists l : Exists P l x, x l P x.
Proof.
split.
- induction 1 as [x|y ?? [x [??]]]; exists x; by repeat constructor.
- intros [x [Hin ?]]. induction l; [by destruct (not_elem_of_nil x)|].
inv Hin; subst; [left|right]; auto.
Qed.
Lemma Exists_inv x l : Exists P (x :: l) P x Exists P l.
Proof. inv 1; intuition trivial. Qed.
Lemma Exists_app l1 l2 : Exists P (l1 ++ l2) Exists P l1 Exists P l2.
Proof.
split.
- induction l1; inv 1; naive_solver.
- intros [H|H]; [induction H | induction l1]; simpl; intuition.
Qed.
Lemma Exists_impl (Q : A Prop) l :
Exists P l ( x, P x Q x) Exists Q l.
Proof. intros H ?. induction H; auto. Defined.
Lemma Exists_not_Forall l : Exists (not P) l ¬Forall P l.
Proof. induction 1; inv 1; contradiction. Qed.
Lemma Forall_not_Exists l : Forall (not P) l ¬Exists P l.
Proof. induction 1; inv 1; contradiction. Qed.
Lemma Forall_list_difference `{!EqDecision A} l k :
Forall P l Forall P (list_difference l k).
Proof.
rewrite !Forall_forall.
intros ? x; rewrite elem_of_list_difference; naive_solver.
Qed.
Lemma Forall_list_union `{!EqDecision A} l k :
Forall P l Forall P k Forall P (list_union l k).
Proof. intros. apply Forall_app; auto using Forall_list_difference. Qed.
Lemma Forall_list_intersection `{!EqDecision A} l k :
Forall P l Forall P (list_intersection l k).
Proof.
rewrite !Forall_forall.
intros ? x; rewrite elem_of_list_intersection; naive_solver.
Qed.
Context {dec : x, Decision (P x)}.
Lemma not_Forall_Exists l : ¬Forall P l Exists (not P) l.
Proof using Type*. intro. by destruct (Forall_Exists_dec P (not P) dec l). Qed.
Lemma not_Exists_Forall l : ¬Exists P l Forall (not P) l.
Proof using Type*.
by destruct (Forall_Exists_dec (not P) P
(λ x : A, swap_if (decide (P x))) l).
Qed.
Global Instance Forall_dec l : Decision (Forall P l) :=
match Forall_Exists_dec P (not P) dec l with
| left H => left H
| right H => right (Exists_not_Forall _ H)
end.
Global Instance Exists_dec l : Decision (Exists P l) :=
match Forall_Exists_dec (not P) P (λ x, swap_if (decide (P x))) l with
| left H => right (Forall_not_Exists _ H)
| right H => left H
end.
End Forall_Exists.
Global Instance Forall_Permutation :
Proper (pointwise_relation _ () ==> () ==> ()) (@Forall A).
Proof.
intros P1 P2 HP l1 l2 Hl. rewrite !Forall_forall.
apply forall_proper; intros x. by rewrite Hl, (HP x).
Qed.
Global Instance Exists_Permutation :
Proper (pointwise_relation _ () ==> () ==> ()) (@Exists A).
Proof.
intros P1 P2 HP l1 l2 Hl. rewrite !Exists_exists.
f_equiv; intros x. by rewrite Hl, (HP x).
Qed.
Lemma head_filter_Some P `{!∀ x : A, Decision (P x)} l x :
head (filter P l) = Some x
l1 l2, l = l1 ++ x :: l2 Forall (λ z, ¬P z) l1.
Proof.
intros Hl. induction l as [|x' l IH]; [done|].
rewrite filter_cons in Hl. case_decide; simplify_eq/=.
- exists [], l. repeat constructor.
- destruct IH as (l1&l2&->&?); [done|].
exists (x' :: l1), l2. by repeat constructor.
Qed.
Lemma last_filter_Some P `{!∀ x : A, Decision (P x)} l x :
last (filter P l) = Some x
l1 l2, l = l1 ++ x :: l2 Forall (λ z, ¬P z) l2.
Proof.
rewrite <-(reverse_involutive (filter P l)), last_reverse, <-filter_reverse.
intros (l1&l2&Heq&Hl)%head_filter_Some.
exists (reverse l2), (reverse l1).
rewrite <-(reverse_involutive l), Heq, reverse_app, reverse_cons, <-(assoc_L (++)).
split; [done|by apply Forall_reverse].
Qed.
Lemma list_exist_dec P l :
( x, Decision (P x)) Decision ( x, x l P x).
Proof.
refine (λ _, cast_if (decide (Exists P l))); by rewrite <-Exists_exists.
Defined.
Lemma list_forall_dec P l :
( x, Decision (P x)) Decision ( x, x l P x).
Proof.
refine (λ _, cast_if (decide (Forall P l))); by rewrite <-Forall_forall.
Defined.
Lemma forallb_True (f : A bool) xs : forallb f xs Forall f xs.
Proof.
split.
- induction xs; naive_solver.
- induction 1; naive_solver.
Qed.
Lemma existb_True (f : A bool) xs : existsb f xs Exists f xs.
Proof.
split.
- induction xs; naive_solver.
- induction 1; naive_solver.
Qed.
Lemma replicate_as_Forall (x : A) n l :
replicate n x = l length l = n Forall (x =.) l.
Proof. rewrite replicate_as_elem_of, Forall_forall. naive_solver. Qed.
Lemma replicate_as_Forall_2 (x : A) n l :
length l = n Forall (x =.) l replicate n x = l.
Proof. by rewrite replicate_as_Forall. Qed.
End general_properties.
Lemma Forall_swap {A B} (Q : A B Prop) l1 l2 :
Forall (λ y, Forall (Q y) l1) l2 Forall (λ x, Forall (flip Q x) l2) l1.
Proof. repeat setoid_rewrite Forall_forall. simpl. split; eauto. Qed.
(** ** Properties of the [Forall2] predicate *)
Lemma Forall_Forall2_diag {A} (Q : A A Prop) l :
Forall (λ x, Q x x) l Forall2 Q l l.
Proof. induction 1; constructor; auto. Qed.
Lemma Forall2_forall `{Inhabited A} B C (Q : A B C Prop) l k :
Forall2 (λ x y, z, Q z x y) l k z, Forall2 (Q z) l k.
Proof.
split; [induction 1; constructor; auto|].
intros Hlk. induction (Hlk inhabitant) as [|x y l k _ _ IH]; constructor.
- intros z. by oinv Hlk.
- apply IH. intros z. by oinv Hlk.
Qed.
Lemma Forall2_same_length {A B} (l : list A) (k : list B) :
Forall2 (λ _ _, True) l k length l = length k.
Proof.
split; [by induction 1; f_equal/=|].
revert k. induction l; intros [|??] ?; simplify_eq/=; auto.
Qed.
Lemma Forall2_Forall {A} P (l1 l2 : list A) :
Forall2 P l1 l2 Forall (uncurry P) (zip l1 l2).
Proof. induction 1; constructor; auto. Qed.
(** Export the Coq stdlib constructors under a different name,
because we use [Forall2_nil] and [Forall2_cons] for a version with a biimplication. *)
Definition Forall2_nil_2 := @Forall2_nil.
Definition Forall2_cons_2 := @Forall2_cons.
Section Forall2.
Context {A B} (P : A B Prop).
Implicit Types x : A.
Implicit Types y : B.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma Forall2_length l k : Forall2 P l k length l = length k.
Proof. by induction 1; f_equal/=. Qed.
Lemma Forall2_length_l l k n : Forall2 P l k length l = n length k = n.
Proof. intros ? <-; symmetry. by apply Forall2_length. Qed.
Lemma Forall2_length_r l k n : Forall2 P l k length k = n length l = n.
Proof. intros ? <-. by apply Forall2_length. Qed.
Lemma Forall2_true l k : ( x y, P x y) length l = length k Forall2 P l k.
Proof. rewrite <-Forall2_same_length. induction 2; naive_solver. Qed.
Lemma Forall2_flip l k : Forall2 (flip P) k l Forall2 P l k.
Proof. split; induction 1; constructor; auto. Qed.
Lemma Forall2_transitive {C} (Q : B C Prop) (R : A C Prop) l k lC :
( x y z, P x y Q y z R x z)
Forall2 P l k Forall2 Q k lC Forall2 R l lC.
Proof. intros ? Hl. revert lC. induction Hl; inv 1; eauto. Qed.
Lemma Forall2_impl (Q : A B Prop) l k :
Forall2 P l k ( x y, P x y Q x y) Forall2 Q l k.
Proof. intros H ?. induction H; auto. Defined.
Lemma Forall2_unique l k1 k2 :
Forall2 P l k1 Forall2 P l k2
( x y1 y2, P x y1 P x y2 y1 = y2) k1 = k2.
Proof.
intros H. revert k2. induction H; inv 1; intros; f_equal; eauto.
Qed.
Lemma Forall_Forall2_l l k :
length l = length k Forall (λ x, y, P x y) l Forall2 P l k.
Proof. rewrite <-Forall2_same_length. induction 1; inv 1; auto. Qed.
Lemma Forall_Forall2_r l k :
length l = length k Forall (λ y, x, P x y) k Forall2 P l k.
Proof. rewrite <-Forall2_same_length. induction 1; inv 1; auto. Qed.
Lemma Forall2_Forall_l (Q : A Prop) l k :
Forall2 P l k Forall (λ y, x, P x y Q x) k Forall Q l.
Proof. induction 1; inv 1; eauto. Qed.
Lemma Forall2_Forall_r (Q : B Prop) l k :
Forall2 P l k Forall (λ x, y, P x y Q y) l Forall Q k.
Proof. induction 1; inv 1; eauto. Qed.
Lemma Forall2_nil_inv_l k : Forall2 P [] k k = [].
Proof. by inv 1. Qed.
Lemma Forall2_nil_inv_r l : Forall2 P l [] l = [].
Proof. by inv 1. Qed.
Lemma Forall2_nil : Forall2 P [] [] True.
Proof. done. Qed.
Lemma Forall2_cons_1 x l y k :
Forall2 P (x :: l) (y :: k) P x y Forall2 P l k.
Proof. by inv 1. Qed.
Lemma Forall2_cons_inv_l x l k :
Forall2 P (x :: l) k y k', P x y Forall2 P l k' k = y :: k'.
Proof. inv 1; eauto. Qed.
Lemma Forall2_cons_inv_r l k y :
Forall2 P l (y :: k) x l', P x y Forall2 P l' k l = x :: l'.
Proof. inv 1; eauto. Qed.
Lemma Forall2_cons_nil_inv x l : Forall2 P (x :: l) [] False.
Proof. by inv 1. Qed.
Lemma Forall2_nil_cons_inv y k : Forall2 P [] (y :: k) False.
Proof. by inv 1. Qed.
Lemma Forall2_cons x l y k :
Forall2 P (x :: l) (y :: k) P x y Forall2 P l k.
Proof.
split; [by apply Forall2_cons_1|]. intros []. by apply Forall2_cons_2.
Qed.
Lemma Forall2_app_l l1 l2 k :
Forall2 P l1 (take (length l1) k) Forall2 P l2 (drop (length l1) k)
Forall2 P (l1 ++ l2) k.
Proof. intros. rewrite <-(take_drop (length l1) k). by apply Forall2_app. Qed.
Lemma Forall2_app_r l k1 k2 :
Forall2 P (take (length k1) l) k1 Forall2 P (drop (length k1) l) k2
Forall2 P l (k1 ++ k2).
Proof. intros. rewrite <-(take_drop (length k1) l). by apply Forall2_app. Qed.
Lemma Forall2_app_inv l1 l2 k1 k2 :
length l1 = length k1
Forall2 P (l1 ++ l2) (k1 ++ k2) Forall2 P l1 k1 Forall2 P l2 k2.
Proof.
rewrite <-Forall2_same_length. induction 1; inv 1; naive_solver.
Qed.
Lemma Forall2_app_inv_l l1 l2 k :
Forall2 P (l1 ++ l2) k
k1 k2, Forall2 P l1 k1 Forall2 P l2 k2 k = k1 ++ k2.
Proof.
split; [|intros (?&?&?&?&->); by apply Forall2_app].
revert k. induction l1; inv 1; naive_solver.
Qed.
Lemma Forall2_app_inv_r l k1 k2 :
Forall2 P l (k1 ++ k2)
l1 l2, Forall2 P l1 k1 Forall2 P l2 k2 l = l1 ++ l2.
Proof.
split; [|intros (?&?&?&?&->); by apply Forall2_app].
revert l. induction k1; inv 1; naive_solver.
Qed.
Lemma Forall2_tail l k : Forall2 P l k Forall2 P (tail l) (tail k).
Proof. destruct 1; simpl; auto. Qed.
Lemma Forall2_take l k n : Forall2 P l k Forall2 P (take n l) (take n k).
Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
Lemma Forall2_drop l k n : Forall2 P l k Forall2 P (drop n l) (drop n k).
Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
Lemma Forall2_lookup l k :
Forall2 P l k i, option_Forall2 P (l !! i) (k !! i).
Proof.
split; [induction 1; intros [|?]; simpl; try constructor; eauto|].
revert k. induction l as [|x l IH]; intros [| y k] H.
- done.
- oinv (H 0).
- oinv (H 0).
- constructor; [by oinv (H 0)|]. apply (IH _ $ λ i, H (S i)).
Qed.
Lemma Forall2_lookup_lr l k i x y :
Forall2 P l k l !! i = Some x k !! i = Some y P x y.
Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
Lemma Forall2_lookup_l l k i x :
Forall2 P l k l !! i = Some x y, k !! i = Some y P x y.
Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
Lemma Forall2_lookup_r l k i y :
Forall2 P l k k !! i = Some y x, l !! i = Some x P x y.
Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
Lemma Forall2_same_length_lookup_2 l k :
length l = length k
( i x y, l !! i = Some x k !! i = Some y P x y) Forall2 P l k.
Proof.
rewrite <-Forall2_same_length. intros Hl Hlookup.
induction Hl as [|?????? IH]; constructor; [by apply (Hlookup 0)|].
apply IH. apply (λ i, Hlookup (S i)).
Qed.
Lemma Forall2_same_length_lookup l k :
Forall2 P l k
length l = length k
( i x y, l !! i = Some x k !! i = Some y P x y).
Proof.
naive_solver eauto using Forall2_length,
Forall2_lookup_lr, Forall2_same_length_lookup_2.
Qed.
Lemma Forall2_alter_l f l k i :
Forall2 P l k
( x y, l !! i = Some x k !! i = Some y P x y P (f x) y)
Forall2 P (alter f i l) k.
Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
Lemma Forall2_alter_r f l k i :
Forall2 P l k
( x y, l !! i = Some x k !! i = Some y P x y P x (f y))
Forall2 P l (alter f i k).
Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
Lemma Forall2_alter f g l k i :
Forall2 P l k
( x y, l !! i = Some x k !! i = Some y P x y P (f x) (g y))
Forall2 P (alter f i l) (alter g i k).
Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
Lemma Forall2_insert l k x y i :
Forall2 P l k P x y Forall2 P (<[i:=x]> l) (<[i:=y]> k).
Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
Lemma Forall2_inserts l k l' k' i :
Forall2 P l k Forall2 P l' k'
Forall2 P (list_inserts i l' l) (list_inserts i k' k).
Proof. intros ? H. revert i. induction H; eauto using Forall2_insert. Qed.
Lemma Forall2_delete l k i :
Forall2 P l k Forall2 P (delete i l) (delete i k).
Proof. intros Hl. revert i. induction Hl; intros [|]; simpl; intuition. Qed.
Lemma Forall2_option_list mx my :
option_Forall2 P mx my Forall2 P (option_list mx) (option_list my).
Proof. destruct 1; by constructor. Qed.
Lemma Forall2_filter Q1 Q2 `{ x, Decision (Q1 x), y, Decision (Q2 y)} l k:
( x y, P x y Q1 x Q2 y)
Forall2 P l k Forall2 P (filter Q1 l) (filter Q2 k).
Proof.
intros HP; induction 1 as [|x y l k]; unfold filter; simpl; auto.
simplify_option_eq by (by rewrite <-(HP x y)); repeat constructor; auto.
Qed.
Lemma Forall2_replicate_l k n x :
length k = n Forall (P x) k Forall2 P (replicate n x) k.
Proof. intros <-. induction 1; simpl; auto. Qed.
Lemma Forall2_replicate_r l n y :
length l = n Forall (flip P y) l Forall2 P l (replicate n y).
Proof. intros <-. induction 1; simpl; auto. Qed.
Lemma Forall2_replicate n x y :
P x y Forall2 P (replicate n x) (replicate n y).
Proof. induction n; simpl; constructor; auto. Qed.
Lemma Forall2_reverse l k : Forall2 P l k Forall2 P (reverse l) (reverse k).
Proof.
induction 1; rewrite ?reverse_nil, ?reverse_cons; eauto using Forall2_app.
Qed.
Lemma Forall2_last l k : Forall2 P l k option_Forall2 P (last l) (last k).
Proof. induction 1 as [|????? []]; simpl; repeat constructor; auto. Qed.
Global Instance Forall2_dec `{dec : x y, Decision (P x y)} :
RelDecision (Forall2 P).
Proof.
refine (
fix go l k : Decision (Forall2 P l k) :=
match l, k with
| [], [] => left _
| x :: l, y :: k => cast_if_and (decide (P x y)) (go l k)
| _, _ => right _
end); clear dec go; abstract first [by constructor | by inv 1].
Defined.
End Forall2.
Section Forall2_proper.
Context {A} (R : relation A).
Global Instance: Reflexive R Reflexive (Forall2 R).
Proof. intros ? l. induction l; by constructor. Qed.
Global Instance: Symmetric R Symmetric (Forall2 R).
Proof. intros. induction 1; constructor; auto. Qed.
Global Instance: Transitive R Transitive (Forall2 R).
Proof. intros ????. apply Forall2_transitive. by apply @transitivity. Qed.
Global Instance: Equivalence R Equivalence (Forall2 R).
Proof. split; apply _. Qed.
Global Instance: PreOrder R PreOrder (Forall2 R).
Proof. split; apply _. Qed.
Global Instance: AntiSymm (=) R AntiSymm (=) (Forall2 R).
Proof. induction 2; inv 1; f_equal; auto. Qed.
Global Instance: Proper (R ==> Forall2 R ==> Forall2 R) (::).
Proof. by constructor. Qed.
Global Instance: Proper (Forall2 R ==> Forall2 R ==> Forall2 R) (++).
Proof. repeat intro. by apply Forall2_app. Qed.
Global Instance: Proper (Forall2 R ==> (=)) length.
Proof. repeat intro. eauto using Forall2_length. Qed.
Global Instance: Proper (Forall2 R ==> Forall2 R) tail.
Proof. repeat intro. eauto using Forall2_tail. Qed.
Global Instance: n, Proper (Forall2 R ==> Forall2 R) (take n).
Proof. repeat intro. eauto using Forall2_take. Qed.
Global Instance: n, Proper (Forall2 R ==> Forall2 R) (drop n).
Proof. repeat intro. eauto using Forall2_drop. Qed.
Global Instance: i, Proper (Forall2 R ==> option_Forall2 R) (lookup i).
Proof. repeat intro. by apply Forall2_lookup. Qed.
Global Instance:
Proper ((R ==> R) ==> (=) ==> Forall2 R ==> Forall2 R) (alter (M:=list A)).
Proof. repeat intro. subst. eauto using Forall2_alter. Qed.
Global Instance: i, Proper (R ==> Forall2 R ==> Forall2 R) (insert i).
Proof. repeat intro. eauto using Forall2_insert. Qed.
Global Instance: i,
Proper (Forall2 R ==> Forall2 R ==> Forall2 R) (list_inserts i).
Proof. repeat intro. eauto using Forall2_inserts. Qed.
Global Instance: i, Proper (Forall2 R ==> Forall2 R) (delete i).
Proof. repeat intro. eauto using Forall2_delete. Qed.
Global Instance: Proper (option_Forall2 R ==> Forall2 R) option_list.
Proof. repeat intro. eauto using Forall2_option_list. Qed.
Global Instance: P `{ x, Decision (P x)},
Proper (R ==> iff) P Proper (Forall2 R ==> Forall2 R) (filter P).
Proof. repeat intro; eauto using Forall2_filter. Qed.
Global Instance: n, Proper (R ==> Forall2 R) (replicate n).
Proof. repeat intro. eauto using Forall2_replicate. Qed.
Global Instance: Proper (Forall2 R ==> Forall2 R) reverse.
Proof. repeat intro. eauto using Forall2_reverse. Qed.
Global Instance: Proper (Forall2 R ==> option_Forall2 R) last.
Proof. repeat intro. eauto using Forall2_last. Qed.
End Forall2_proper.
Section Forall3.
Context {A B C} (P : A B C Prop).
Local Hint Extern 0 (Forall3 _ _ _ _) => constructor : core.
Lemma Forall3_app l1 l2 k1 k2 k1' k2' :
Forall3 P l1 k1 k1' Forall3 P l2 k2 k2'
Forall3 P (l1 ++ l2) (k1 ++ k2) (k1' ++ k2').
Proof. induction 1; simpl; auto. Qed.
Lemma Forall3_cons_inv_l x l k k' :
Forall3 P (x :: l) k k' y k2 z k2',
k = y :: k2 k' = z :: k2' P x y z Forall3 P l k2 k2'.
Proof. inv 1; naive_solver. Qed.
Lemma Forall3_app_inv_l l1 l2 k k' :
Forall3 P (l1 ++ l2) k k' k1 k2 k1' k2',
k = k1 ++ k2 k' = k1' ++ k2' Forall3 P l1 k1 k1' Forall3 P l2 k2 k2'.
Proof.
revert k k'. induction l1 as [|x l1 IH]; simpl; inv 1.
- by repeat eexists; eauto.
- by repeat eexists; eauto.
- edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
Qed.
Lemma Forall3_cons_inv_m l y k k' :
Forall3 P l (y :: k) k' x l2 z k2',
l = x :: l2 k' = z :: k2' P x y z Forall3 P l2 k k2'.
Proof. inv 1; naive_solver. Qed.
Lemma Forall3_app_inv_m l k1 k2 k' :
Forall3 P l (k1 ++ k2) k' l1 l2 k1' k2',
l = l1 ++ l2 k' = k1' ++ k2' Forall3 P l1 k1 k1' Forall3 P l2 k2 k2'.
Proof.
revert l k'. induction k1 as [|x k1 IH]; simpl; inv 1.
- by repeat eexists; eauto.
- by repeat eexists; eauto.
- edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
Qed.
Lemma Forall3_cons_inv_r l k z k' :
Forall3 P l k (z :: k') x l2 y k2,
l = x :: l2 k = y :: k2 P x y z Forall3 P l2 k2 k'.
Proof. inv 1; naive_solver. Qed.
Lemma Forall3_app_inv_r l k k1' k2' :
Forall3 P l k (k1' ++ k2') l1 l2 k1 k2,
l = l1 ++ l2 k = k1 ++ k2 Forall3 P l1 k1 k1' Forall3 P l2 k2 k2'.
Proof.
revert l k. induction k1' as [|x k1' IH]; simpl; inv 1.
- by repeat eexists; eauto.
- by repeat eexists; eauto.
- edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
Qed.
Lemma Forall3_impl (Q : A B C Prop) l k k' :
Forall3 P l k k' ( x y z, P x y z Q x y z) Forall3 Q l k k'.
Proof. intros Hl ?; induction Hl; auto. Defined.
Lemma Forall3_length_lm l k k' : Forall3 P l k k' length l = length k.
Proof. by induction 1; f_equal/=. Qed.
Lemma Forall3_length_lr l k k' : Forall3 P l k k' length l = length k'.
Proof. by induction 1; f_equal/=. Qed.
Lemma Forall3_lookup_lmr l k k' i x y z :
Forall3 P l k k'
l !! i = Some x k !! i = Some y k' !! i = Some z P x y z.
Proof.
intros H. revert i. induction H; intros [|?] ???; simplify_eq/=; eauto.
Qed.
Lemma Forall3_lookup_l l k k' i x :
Forall3 P l k k' l !! i = Some x
y z, k !! i = Some y k' !! i = Some z P x y z.
Proof.
intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
Qed.
Lemma Forall3_lookup_m l k k' i y :
Forall3 P l k k' k !! i = Some y
x z, l !! i = Some x k' !! i = Some z P x y z.
Proof.
intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
Qed.
Lemma Forall3_lookup_r l k k' i z :
Forall3 P l k k' k' !! i = Some z
x y, l !! i = Some x k !! i = Some y P x y z.
Proof.
intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
Qed.
Lemma Forall3_alter_lm f g l k k' i :
Forall3 P l k k'
( x y z, l !! i = Some x k !! i = Some y k' !! i = Some z
P x y z P (f x) (g y) z)
Forall3 P (alter f i l) (alter g i k) k'.
Proof. intros Hl. revert i. induction Hl; intros [|]; auto. Qed.
End Forall3.
(** ** Properties of [subseteq] *)
Section subseteq.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
Global Instance list_subseteq_po : PreOrder (⊆@{list A}).
Proof. split; firstorder. Qed.
Lemma list_subseteq_nil l : [] l.
Proof. intros x. by rewrite elem_of_nil. Qed.
Lemma list_nil_subseteq l : l [] l = [].
Proof.
intro Hl. destruct l as [|x l1]; [done|]. exfalso.
rewrite <-(elem_of_nil x).
apply Hl, elem_of_cons. by left.
Qed.
Lemma list_subseteq_skip x l1 l2 : l1 l2 x :: l1 x :: l2.
Proof.
intros Hin y Hy%elem_of_cons.
destruct Hy as [-> | Hy]; [by left|]. right. by apply Hin.
Qed.
Lemma list_subseteq_cons x l1 l2 : l1 l2 l1 x :: l2.
Proof. intros Hin y Hy. right. by apply Hin. Qed.
Lemma list_subseteq_app_l l1 l2 l : l1 l2 l1 l2 ++ l.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_app. naive_solver. Qed.
Lemma list_subseteq_app_r l1 l2 l : l1 l2 l1 l ++ l2.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_app. naive_solver. Qed.
Lemma list_subseteq_app_iff_l l1 l2 l :
l1 ++ l2 l l1 l l2 l.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_app. naive_solver. Qed.
Lemma list_subseteq_cons_iff x l1 l2 :
x :: l1 l2 x l2 l1 l2.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_cons. naive_solver. Qed.
Lemma list_delete_subseteq i l : delete i l l.
Proof.
revert i. induction l as [|x l IHl]; intros i; [done|].
destruct i as [|i];
[by apply list_subseteq_cons|by apply list_subseteq_skip].
Qed.
Lemma list_filter_subseteq P `{!∀ x : A, Decision (P x)} l :
filter P l l.
Proof.
induction l as [|x l IHl]; [done|]. rewrite filter_cons.
destruct (decide (P x));
[by apply list_subseteq_skip|by apply list_subseteq_cons].
Qed.
Lemma subseteq_drop n l : drop n l l.
Proof. rewrite <-(take_drop n l) at 2. apply list_subseteq_app_r. done. Qed.
Lemma subseteq_take n l : take n l l.
Proof. rewrite <-(take_drop n l) at 2. apply list_subseteq_app_l. done. Qed.
Global Instance list_subseteq_Permutation:
Proper (() ==> () ==> ()) (⊆@{list A}) .
Proof.
intros l1 l2 Hl k1 k2 Hk. apply forall_proper; intros x. by rewrite Hl, Hk.
Qed.
Global Program Instance list_subseteq_dec `{!EqDecision A} : RelDecision (⊆@{list A}) :=
λ xs ys, cast_if (decide (Forall (λ x, x ys) xs)).
Next Obligation. intros ???. by rewrite Forall_forall. Qed.
Next Obligation. intros ???. by rewrite Forall_forall. Qed.
End subseteq.
(** Setoids *)
Section setoid.
Context `{Equiv A}.
Implicit Types l k : list A.
Lemma list_equiv_Forall2 l k : l k Forall2 () l k.
Proof. split; induction 1; constructor; auto. Qed.
Lemma list_equiv_lookup l k : l k i, l !! i k !! i.
Proof.
rewrite list_equiv_Forall2, Forall2_lookup.
by setoid_rewrite option_equiv_Forall2.
Qed.
Global Instance list_equivalence :
Equivalence (≡@{A}) Equivalence (≡@{list A}).
Proof.
split.
- intros l. by apply list_equiv_Forall2.
- intros l k; rewrite !list_equiv_Forall2; by intros.
- intros l1 l2 l3; rewrite !list_equiv_Forall2; intros; by trans l2.
Qed.
Global Instance list_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (list A).
Proof. induction 1; f_equal; fold_leibniz; auto. Qed.
Global Instance cons_proper : Proper (() ==> () ==> (≡@{list A})) cons.
Proof. by constructor. Qed.
Global Instance app_proper : Proper (() ==> () ==> (≡@{list A})) app.
Proof. induction 1; intros ???; simpl; try constructor; auto. Qed.
Global Instance length_proper : Proper ((≡@{list A}) ==> (=)) length.
Proof. induction 1; f_equal/=; auto. Qed.
Global Instance tail_proper : Proper ((≡@{list A}) ==> ()) tail.
Proof. destruct 1; try constructor; auto. Qed.
Global Instance take_proper n : Proper ((≡@{list A}) ==> ()) (take n).
Proof. induction n; destruct 1; constructor; auto. Qed.
Global Instance drop_proper n : Proper ((≡@{list A}) ==> ()) (drop n).
Proof. induction n; destruct 1; simpl; try constructor; auto. Qed.
Global Instance list_lookup_proper i : Proper ((≡@{list A}) ==> ()) (lookup i).
Proof. induction i; destruct 1; simpl; try constructor; auto. Qed.
Global Instance list_lookup_total_proper `{!Inhabited A} i :
Proper (≡@{A}) inhabitant
Proper ((≡@{list A}) ==> ()) (lookup_total i).
Proof. intros ?. induction i; destruct 1; simpl; auto. Qed.
Global Instance list_alter_proper :
Proper ((() ==> ()) ==> (=) ==> () ==> (≡@{list A})) alter.
Proof.
intros f1 f2 Hf i ? <-. induction i; destruct 1; constructor; eauto.
Qed.
Global Instance list_insert_proper i :
Proper (() ==> () ==> (≡@{list A})) (insert i).
Proof. intros ???; induction i; destruct 1; constructor; eauto. Qed.
Global Instance list_inserts_proper i :
Proper (() ==> () ==> (≡@{list A})) (list_inserts i).
Proof.
intros k1 k2 Hk; revert i.
induction Hk; intros ????; simpl; try f_equiv; naive_solver.
Qed.
Global Instance list_delete_proper i :
Proper (() ==> (≡@{list A})) (delete i).
Proof. induction i; destruct 1; try constructor; eauto. Qed.
Global Instance option_list_proper : Proper (() ==> (≡@{list A})) option_list.
Proof. destruct 1; repeat constructor; auto. Qed.
Global Instance list_filter_proper P `{ x, Decision (P x)} :
Proper (() ==> iff) P Proper (() ==> (≡@{list A})) (filter P).
Proof. intros ???. rewrite !list_equiv_Forall2. by apply Forall2_filter. Qed.
Global Instance replicate_proper n : Proper ((≡@{A}) ==> ()) (replicate n).
Proof. induction n; constructor; auto. Qed.
Global Instance reverse_proper : Proper (() ==> (≡@{list A})) reverse.
Proof.
induction 1; rewrite ?reverse_cons; simpl; [constructor|].
apply app_proper; repeat constructor; auto.
Qed.
Global Instance last_proper : Proper (() ==> ()) (@last A).
Proof. induction 1 as [|????? []]; simpl; repeat constructor; auto. Qed.
Global Instance cons_equiv_inj : Inj2 () () () (@cons A).
Proof. inv 1; auto. Qed.
Lemma nil_equiv_eq l : l [] l = [].
Proof. split; [by inv 1|intros ->; constructor]. Qed.
Lemma cons_equiv_eq l x k : l x :: k x' k', l = x' :: k' x' x k' k.
Proof. split; [inv 1; naive_solver|naive_solver (by constructor)]. Qed.
Lemma list_singleton_equiv_eq l x : l [x] x', l = [x'] x' x.
Proof. rewrite cons_equiv_eq. setoid_rewrite nil_equiv_eq. naive_solver. Qed.
Lemma app_equiv_eq l k1 k2 :
l k1 ++ k2 k1' k2', l = k1' ++ k2' k1' k1 k2' k2.
Proof.
split; [|intros (?&?&->&?&?); by f_equiv].
setoid_rewrite list_equiv_Forall2. rewrite Forall2_app_inv_r. naive_solver.
Qed.
Lemma equiv_Permutation l1 l2 l3 :
l1 l2 l2 l3 l2', l1 l2' l2' l3.
Proof.
intros Hequiv Hperm. revert l1 Hequiv.
induction Hperm as [|x l2 l3 _ IH|x y l2|l2 l3 l4 _ IH1 _ IH2]; intros l1.
- intros ?. by exists l1.
- intros (x'&l2'&->&?&(l2''&?&?)%IH)%cons_equiv_eq.
exists (x' :: l2''). by repeat constructor.
- intros (y'&?&->&?&(x'&l2'&->&?&?)%cons_equiv_eq)%cons_equiv_eq.
exists (x' :: y' :: l2'). by repeat constructor.
- intros (l2'&?&(l3'&?&?)%IH2)%IH1. exists l3'. split; [by etrans|done].
Qed.
Lemma Permutation_equiv `{!Equivalence (≡@{A})} l1 l2 l3 :
l1 l2 l2 l3 l2', l1 l2' l2' l3.
Proof.
intros Hperm%symmetry Hequiv%symmetry.
destruct (equiv_Permutation _ _ _ Hequiv Hperm) as (l2'&?&?).
by exists l2'.
Qed.
End setoid.
Lemma TCForall_Forall {A} (P : A Prop) xs : TCForall P xs Forall P xs.
Proof. split; induction 1; constructor; auto. Qed.
Global Instance TCForall_app {A} (P : A Prop) xs ys :
TCForall P xs TCForall P ys TCForall P (xs ++ ys).
Proof. rewrite !TCForall_Forall. apply Forall_app_2. Qed.
Lemma TCForall2_Forall2 {A B} (P : A B Prop) xs ys :
TCForall2 P xs ys Forall2 P xs ys.
Proof. split; induction 1; constructor; auto. Qed.
Lemma TCExists_Exists {A} (P : A Prop) l : TCExists P l Exists P l.
Proof. split; induction 1; constructor; solve [auto]. Qed.
From Coq Require Export Permutation.
From stdpp Require Export numbers base option list_basics list_relations list_monad.
From stdpp Require Import options.
(** * Reflection over lists *)
(** We define a simple data structure [rlist] to capture a syntactic
representation of lists consisting of constants, applications and the nil list.
Note that we represent [(x ::.)] as [rapp (rnode [x])]. For now, we abstract
over the type of constants, but later we use [nat]s and a list representing
a corresponding environment. *)
Inductive rlist (A : Type) :=
rnil : rlist A | rnode : A rlist A | rapp : rlist A rlist A rlist A.
Global Arguments rnil {_} : assert.
Global Arguments rnode {_} _ : assert.
Global Arguments rapp {_} _ _ : assert.
Module rlist.
Fixpoint to_list {A} (t : rlist A) : list A :=
match t with
| rnil => [] | rnode l => [l] | rapp t1 t2 => to_list t1 ++ to_list t2
end.
Notation env A := (list (list A)) (only parsing).
Definition eval {A} (E : env A) : rlist nat list A :=
fix go t :=
match t with
| rnil => []
| rnode i => default [] (E !! i)
| rapp t1 t2 => go t1 ++ go t2
end.
(** A simple quoting mechanism using type classes. [QuoteLookup E1 E2 x i]
means: starting in environment [E1], look up the index [i] corresponding to the
constant [x]. In case [x] has a corresponding index [i] in [E1], the original
environment is given back as [E2]. Otherwise, the environment [E2] is extended
with a binding [i] for [x]. *)
Section quote_lookup.
Context {A : Type}.
Class QuoteLookup (E1 E2 : list A) (x : A) (i : nat) := {}.
Global Instance quote_lookup_here E x : QuoteLookup (x :: E) (x :: E) x 0 := {}.
Global Instance quote_lookup_end x : QuoteLookup [] [x] x 0 := {}.
Global Instance quote_lookup_further E1 E2 x i y :
QuoteLookup E1 E2 x i QuoteLookup (y :: E1) (y :: E2) x (S i) | 1000 := {}.
End quote_lookup.
Section quote.
Context {A : Type}.
Class Quote (E1 E2 : env A) (l : list A) (t : rlist nat) := {}.
Global Instance quote_nil E1 : Quote E1 E1 [] rnil := {}.
Global Instance quote_node E1 E2 l i:
QuoteLookup E1 E2 l i Quote E1 E2 l (rnode i) | 1000 := {}.
Global Instance quote_cons E1 E2 E3 x l i t :
QuoteLookup E1 E2 [x] i
Quote E2 E3 l t Quote E1 E3 (x :: l) (rapp (rnode i) t) := {}.
Global Instance quote_app E1 E2 E3 l1 l2 t1 t2 :
Quote E1 E2 l1 t1 Quote E2 E3 l2 t2 Quote E1 E3 (l1 ++ l2) (rapp t1 t2) := {}.
End quote.
Section eval.
Context {A} (E : env A).
Lemma eval_alt t : eval E t = to_list t ≫= default [] (E !!.).
Proof.
induction t; csimpl.
- done.
- by rewrite (right_id_L [] (++)).
- rewrite bind_app. by f_equal.
Qed.
Lemma eval_eq t1 t2 : to_list t1 = to_list t2 eval E t1 = eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
Lemma eval_Permutation t1 t2 :
to_list t1 to_list t2 eval E t1 eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
Lemma eval_submseteq t1 t2 :
to_list t1 ⊆+ to_list t2 eval E t1 ⊆+ eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
End eval.
End rlist.
(** * Tactics *)
Ltac quote_Permutation :=
match goal with
| |- ?l1 ?l2 =>
match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 =>
match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 =>
change (rlist.eval E3 t1 rlist.eval E3 t2)
end end
end.
Ltac solve_Permutation :=
quote_Permutation; apply rlist.eval_Permutation;
compute_done.
Ltac quote_submseteq :=
match goal with
| |- ?l1 ⊆+ ?l2 =>
match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 =>
match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 =>
change (rlist.eval E3 t1 ⊆+ rlist.eval E3 t2)
end end
end.
Ltac solve_submseteq :=
quote_submseteq; apply rlist.eval_submseteq;
compute_done.
Ltac decompose_elem_of_list := repeat
match goal with
| H : ?x [] |- _ => by destruct (not_elem_of_nil x)
| H : _ _ :: _ |- _ => apply elem_of_cons in H; destruct H
| H : _ _ ++ _ |- _ => apply elem_of_app in H; destruct H
end.
Ltac solve_length :=
simplify_eq/=;
repeat (rewrite length_fmap || rewrite length_app);
repeat match goal with
| H : _ =@{list _} _ |- _ => apply (f_equal length) in H
| H : Forall2 _ _ _ |- _ => apply Forall2_length in H
| H : context[length (_ <$> _)] |- _ => rewrite length_fmap in H
end; done || congruence.
Ltac simplify_list_eq ::= repeat
match goal with
| _ => progress simplify_eq/=
| H : [?x] !! ?i = Some ?y |- _ =>
destruct i; [change (Some x = Some y) in H | discriminate]
| H : _ <$> _ = [] |- _ => apply fmap_nil_inv in H
| H : [] = _ <$> _ |- _ => symmetry in H; apply fmap_nil_inv in H
| H : zip_with _ _ _ = [] |- _ => apply zip_with_nil_inv in H; destruct H
| H : [] = zip_with _ _ _ |- _ => symmetry in H
| |- context [(_ ++ _) ++ _] => rewrite <-(assoc_L (++))
| H : context [(_ ++ _) ++ _] |- _ => rewrite <-(assoc_L (++)) in H
| H : context [_ <$> (_ ++ _)] |- _ => rewrite fmap_app in H
| |- context [_ <$> (_ ++ _)] => rewrite fmap_app
| |- context [_ ++ []] => rewrite (right_id_L [] (++))
| H : context [_ ++ []] |- _ => rewrite (right_id_L [] (++)) in H
| |- context [take _ (_ <$> _)] => rewrite <-fmap_take
| H : context [take _ (_ <$> _)] |- _ => rewrite <-fmap_take in H
| |- context [drop _ (_ <$> _)] => rewrite <-fmap_drop
| H : context [drop _ (_ <$> _)] |- _ => rewrite <-fmap_drop in H
| H : _ ++ _ = _ ++ _ |- _ =>
repeat (rewrite <-app_comm_cons in H || rewrite <-(assoc_L (++)) in H);
apply app_inj_1 in H; [destruct H|solve_length]
| H : _ ++ _ = _ ++ _ |- _ =>
repeat (rewrite app_comm_cons in H || rewrite (assoc_L (++)) in H);
apply app_inj_2 in H; [destruct H|solve_length]
| |- context [zip_with _ (_ ++ _) (_ ++ _)] =>
rewrite zip_with_app by solve_length
| |- context [take _ (_ ++ _)] => rewrite take_app_length' by solve_length
| |- context [drop _ (_ ++ _)] => rewrite drop_app_length' by solve_length
| H : context [zip_with _ (_ ++ _) (_ ++ _)] |- _ =>
rewrite zip_with_app in H by solve_length
| H : context [take _ (_ ++ _)] |- _ =>
rewrite take_app_length' in H by solve_length
| H : context [drop _ (_ ++ _)] |- _ =>
rewrite drop_app_length' in H by solve_length
| H : ?l !! ?i = _, H2 : context [(_ <$> ?l) !! ?i] |- _ =>
rewrite list_lookup_fmap, H in H2
end.
Ltac decompose_Forall_hyps :=
repeat match goal with
| H : Forall _ [] |- _ => clear H
| H : Forall _ (_ :: _) |- _ => rewrite Forall_cons in H; destruct H
| H : Forall _ (_ ++ _) |- _ => rewrite Forall_app in H; destruct H
| H : Forall2 _ [] [] |- _ => clear H
| H : Forall2 _ (_ :: _) [] |- _ => destruct (Forall2_cons_nil_inv _ _ _ H)
| H : Forall2 _ [] (_ :: _) |- _ => destruct (Forall2_nil_cons_inv _ _ _ H)
| H : Forall2 _ [] ?k |- _ => apply Forall2_nil_inv_l in H
| H : Forall2 _ ?l [] |- _ => apply Forall2_nil_inv_r in H
| H : Forall2 _ (_ :: _) (_ :: _) |- _ =>
apply Forall2_cons_1 in H; destruct H
| H : Forall2 _ (_ :: _) ?k |- _ =>
let k_hd := fresh k "_hd" in let k_tl := fresh k "_tl" in
apply Forall2_cons_inv_l in H; destruct H as (k_hd&k_tl&?&?&->);
rename k_tl into k
| H : Forall2 _ ?l (_ :: _) |- _ =>
let l_hd := fresh l "_hd" in let l_tl := fresh l "_tl" in
apply Forall2_cons_inv_r in H; destruct H as (l_hd&l_tl&?&?&->);
rename l_tl into l
| H : Forall2 _ (_ ++ _) ?k |- _ =>
let k1 := fresh k "_1" in let k2 := fresh k "_2" in
apply Forall2_app_inv_l in H; destruct H as (k1&k2&?&?&->)
| H : Forall2 _ ?l (_ ++ _) |- _ =>
let l1 := fresh l "_1" in let l2 := fresh l "_2" in
apply Forall2_app_inv_r in H; destruct H as (l1&l2&?&?&->)
| _ => progress simplify_eq/=
| H : Forall3 _ _ (_ :: _) _ |- _ =>
apply Forall3_cons_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
| H : Forall2 _ (_ :: _) ?k |- _ =>
apply Forall2_cons_inv_l in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ ?l (_ :: _) |- _ =>
apply Forall2_cons_inv_r in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ (_ ++ _) (_ ++ _) |- _ =>
apply Forall2_app_inv in H; [destruct H|solve_length]
| H : Forall2 _ ?l (_ ++ _) |- _ =>
apply Forall2_app_inv_r in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ (_ ++ _) ?k |- _ =>
apply Forall2_app_inv_l in H; destruct H as (?&?&?&?&?)
| H : Forall3 _ _ (_ ++ _) _ |- _ =>
apply Forall3_app_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
| H : Forall ?P ?l, H1 : ?l !! _ = Some ?x |- _ =>
(* to avoid some stupid loops, not fool proof *)
unless (P x) by auto using Forall_app_2, Forall_nil_2;
let E := fresh in
assert (P x) as E by (apply (Forall_lookup_1 P _ _ _ H H1)); lazy beta in E
| H : Forall2 ?P ?l ?k |- _ =>
match goal with
| H1 : l !! ?i = Some ?x, H2 : k !! ?i = Some ?y |- _ =>
unless (P x y) by done; let E := fresh in
assert (P x y) as E by (by apply (Forall2_lookup_lr P l k i x y));
lazy beta in E
| H1 : l !! ?i = Some ?x |- _ =>
try (match goal with _ : k !! i = Some _ |- _ => fail 2 end);
destruct (Forall2_lookup_l P _ _ _ _ H H1) as (?&?&?)
| H2 : k !! ?i = Some ?y |- _ =>
try (match goal with _ : l !! i = Some _ |- _ => fail 2 end);
destruct (Forall2_lookup_r P _ _ _ _ H H2) as (?&?&?)
end
| H : Forall3 ?P ?l ?l' ?k |- _ =>
lazymatch goal with
| H1:l !! ?i = Some ?x, H2:l' !! ?i = Some ?y, H3:k !! ?i = Some ?z |- _ =>
unless (P x y z) by done; let E := fresh in
assert (P x y z) as E by (by apply (Forall3_lookup_lmr P l l' k i x y z));
lazy beta in E
| H1 : l !! _ = Some ?x |- _ =>
destruct (Forall3_lookup_l P _ _ _ _ _ H H1) as (?&?&?&?&?)
| H2 : l' !! _ = Some ?y |- _ =>
destruct (Forall3_lookup_m P _ _ _ _ _ H H2) as (?&?&?&?&?)
| H3 : k !! _ = Some ?z |- _ =>
destruct (Forall3_lookup_r P _ _ _ _ _ H H3) as (?&?&?&?&?)
end
end.
Ltac list_simplifier :=
simplify_eq/=;
repeat match goal with
| _ => progress decompose_Forall_hyps
| _ => progress simplify_list_eq
| H : _ <$> _ = _ :: _ |- _ =>
apply fmap_cons_inv in H; destruct H as (?&?&?&?&?)
| H : _ :: _ = _ <$> _ |- _ => symmetry in H
| H : _ <$> _ = _ ++ _ |- _ =>
apply fmap_app_inv in H; destruct H as (?&?&?&?&?)
| H : _ ++ _ = _ <$> _ |- _ => symmetry in H
| H : zip_with _ _ _ = _ :: _ |- _ =>
apply zip_with_cons_inv in H; destruct H as (?&?&?&?&?&?&?&?)
| H : _ :: _ = zip_with _ _ _ |- _ => symmetry in H
| H : zip_with _ _ _ = _ ++ _ |- _ =>
apply zip_with_app_inv in H; destruct H as (?&?&?&?&?&?&?&?&?)
| H : _ ++ _ = zip_with _ _ _ |- _ => symmetry in H
end.
Ltac decompose_Forall := repeat
match goal with
| |- Forall _ _ => by apply Forall_true
| |- Forall _ [] => constructor
| |- Forall _ (_ :: _) => constructor
| |- Forall _ (_ ++ _) => apply Forall_app_2
| |- Forall _ (_ <$> _) => apply Forall_fmap
| |- Forall _ (_ ≫= _) => apply Forall_bind
| |- Forall2 _ _ _ => apply Forall_Forall2_diag
| |- Forall2 _ [] [] => constructor
| |- Forall2 _ (_ :: _) (_ :: _) => constructor
| |- Forall2 _ (_ ++ _) (_ ++ _) => first
[ apply Forall2_app; [by decompose_Forall |]
| apply Forall2_app; [| by decompose_Forall]]
| |- Forall2 _ (_ <$> _) _ => apply Forall2_fmap_l
| |- Forall2 _ _ (_ <$> _) => apply Forall2_fmap_r
| _ => progress decompose_Forall_hyps
| H : Forall _ (_ <$> _) |- _ => rewrite Forall_fmap in H
| H : Forall _ (_ ≫= _) |- _ => rewrite Forall_bind in H
| |- Forall _ _ =>
apply Forall_lookup_2; intros ???; progress decompose_Forall_hyps
| |- Forall2 _ _ _ =>
apply Forall2_same_length_lookup_2; [solve_length|];
intros ?????; progress decompose_Forall_hyps
end.
(** The [simplify_suffix] tactic removes [suffix] hypotheses that are
tautologies, and simplifies [suffix] hypotheses involving [(::)] and
[(++)]. *)
Ltac simplify_suffix := repeat
match goal with
| H : suffix (_ :: _) _ |- _ => destruct (suffix_cons_not _ _ H)
| H : suffix (_ :: _) [] |- _ => apply suffix_nil_inv in H
| H : suffix (_ ++ _) (_ ++ _) |- _ => apply suffix_app_inv in H
| H : suffix (_ :: _) (_ :: _) |- _ =>
destruct (suffix_cons_inv _ _ _ _ H); clear H
| H : suffix ?x ?x |- _ => clear H
| H : suffix ?x (_ :: ?x) |- _ => clear H
| H : suffix ?x (_ ++ ?x) |- _ => clear H
| _ => progress simplify_eq/=
end.
(** The [solve_suffix] tactic tries to solve goals involving [suffix]. It
uses [simplify_suffix] to simplify hypotheses and tries to solve [suffix]
conclusions. This tactic either fails or proves the goal. *)
Ltac solve_suffix := by intuition (repeat
match goal with
| _ => done
| _ => progress simplify_suffix
| |- suffix [] _ => apply suffix_nil
| |- suffix _ _ => reflexivity
| |- suffix _ (_ :: _) => apply suffix_cons_r
| |- suffix _ (_ ++ _) => apply suffix_app_r
| H : suffix _ _ False |- _ => destruct H
end).
......@@ -4,8 +4,8 @@ From stdpp Require Export sets list.
From stdpp Require Import options.
Record listset A := Listset { listset_car: list A }.
Arguments listset_car {_} _ : assert.
Arguments Listset {_} _ : assert.
Global Arguments listset_car {_} _ : assert.
Global Arguments Listset {_} _ : assert.
Section listset.
Context {A : Type}.
......@@ -28,7 +28,7 @@ Lemma listset_empty_alt X : X ≡ ∅ ↔ listset_car X = [].
Proof.
destruct X as [l]; split; [|by intros; simplify_eq/=].
rewrite elem_of_equiv_empty; intros Hl.
destruct l as [|x l]; [done|]. feed inversion (Hl x). left.
destruct l as [|x l]; [done|]. oinversion Hl. left.
Qed.
Global Instance listset_empty_dec (X : listset A) : Decision (X ).
Proof.
......@@ -48,7 +48,7 @@ Global Instance listset_intersection: Intersection (listset A) :=
Global Instance listset_difference: Difference (listset A) :=
λ '(Listset l) '(Listset k), Listset (list_difference l k).
Instance listset_set: Set_ A (listset A).
Local Instance listset_set: Set_ A (listset A).
Proof.
split.
- apply _.
......@@ -66,14 +66,14 @@ Proof.
Qed.
End listset.
Instance listset_ret: MRet listset := λ A x, {[ x ]}.
Instance listset_fmap: FMap listset := λ A B f '(Listset l),
Global Instance listset_ret: MRet listset := λ A x, {[ x ]}.
Global Instance listset_fmap: FMap listset := λ A B f '(Listset l),
Listset (f <$> l).
Instance listset_bind: MBind listset := λ A B f '(Listset l),
Global Instance listset_bind: MBind listset := λ A B f '(Listset l),
Listset (mbind (listset_car f) l).
Instance listset_join: MJoin listset := λ A, mbind id.
Global Instance listset_join: MJoin listset := λ A, mbind id.
Instance listset_set_monad : MonadSet listset.
Global Instance listset_set_monad : MonadSet listset.
Proof.
split.
- intros. apply _.
......
......@@ -7,9 +7,9 @@ From stdpp Require Import options.
Record listset_nodup A := ListsetNoDup {
listset_nodup_car : list A; listset_nodup_prf : NoDup listset_nodup_car
}.
Arguments ListsetNoDup {_} _ _ : assert.
Arguments listset_nodup_car {_} _ : assert.
Arguments listset_nodup_prf {_} _ : assert.
Global Arguments ListsetNoDup {_} _ _ : assert.
Global Arguments listset_nodup_car {_} _ : assert.
Global Arguments listset_nodup_prf {_} _ : assert.
Section list_set.
Context `{EqDecision A}.
......@@ -29,7 +29,7 @@ Global Instance listset_nodup_difference: Difference C :=
λ '(ListsetNoDup l Hl) '(ListsetNoDup k Hk),
ListsetNoDup _ (NoDup_list_difference _ k Hl).
Instance listset_nodup_set: Set_ A C.
Local Instance listset_nodup_set: Set_ A C.
Proof.
split; [split | | ].
- by apply not_elem_of_nil.
......
......@@ -8,10 +8,16 @@ From stdpp Require Import options.
locally (or things moved out of sections) as no default works well enough. *)
Unset Default Proof Using.
Record mapset (M : Type Type) : Type :=
Mapset { mapset_car: M (unit : Type) }.
Arguments Mapset {_} _ : assert.
Arguments mapset_car {_} _ : assert.
(** Given a type of maps [M : Type → Type], we construct sets as [M ()], i.e.,
maps with unit values. To avoid unnecessary universe constraints, we first
define [mapset' Munit] with [Munit : Type] as a record, and then [mapset M] with
[M : Type → Type] as a notation. See [tests/universes.v] for a test case that
fails otherwise. *)
Record mapset' (Munit : Type) : Type :=
Mapset { mapset_car: Munit }.
Notation mapset M := (mapset' (M unit)).
Global Arguments Mapset {_} _ : assert.
Global Arguments mapset_car {_} _ : assert.
Section mapset.
Context `{FinMap K M}.
......@@ -37,7 +43,7 @@ Proof.
f_equal. apply map_eq. intros i. apply option_eq. intros []. by apply E.
Qed.
Instance mapset_set: Set_ K (mapset M).
Local Instance mapset_set: Set_ K (mapset M).
Proof.
split; [split | | ].
- unfold empty, elem_of, mapset_empty, mapset_elem_of.
......@@ -103,11 +109,9 @@ Definition mapset_map_with {A B} (f : bool → A → option B)
match x, y with
| Some _, Some a => f true a | None, Some a => f false a | _, None => None
end) mX.
Definition mapset_dom_with {A} (f : A bool) (m : M A) : mapset M :=
Mapset $ merge (λ x _,
match x with
| Some a => if f a then Some () else None | None => None
end) m (@empty (M A) _).
Mapset $ omap (λ a, if f a then Some () else None) m.
Lemma lookup_mapset_map_with {A B} (f : bool A option B) X m i :
mapset_map_with f X m !! i = m !! i ≫= f (bool_decide (i X)).
......@@ -120,20 +124,19 @@ Lemma elem_of_mapset_dom_with {A} (f : A → bool) m i :
i mapset_dom_with f m x, m !! i = Some x f x.
Proof.
unfold mapset_dom_with, elem_of, mapset_elem_of.
simpl. rewrite lookup_merge by done. destruct (m !! i) as [a|].
simpl. rewrite lookup_omap. destruct (m !! i) as [a|]; simpl.
- destruct (Is_true_reflect (f a)); naive_solver.
- naive_solver.
Qed.
Instance mapset_dom {A} : Dom (M A) (mapset M) := mapset_dom_with (λ _, true).
Instance mapset_dom_spec: FinMapDom K M (mapset M).
Local Instance mapset_dom {A} : Dom (M A) (mapset M) := λ m,
Mapset $ fmap (λ _, ()) m.
Local Instance mapset_dom_spec: FinMapDom K M (mapset M).
Proof.
split; try apply _. intros. unfold dom, mapset_dom, is_Some.
rewrite elem_of_mapset_dom_with; naive_solver.
split; try apply _. intros A m i.
unfold dom, mapset_dom, is_Some, elem_of, mapset_elem_of; simpl.
rewrite lookup_fmap. destruct (m !! i); naive_solver.
Qed.
End mapset.
(** [mapset_elem_of] internally contains an equality; make sure that tactics do
not unfold it and try to unify [∈] against goals with [=]. *)
Opaque mapset_elem_of.
Arguments mapset_eq_dec : simpl never.
Global Arguments mapset_eq_dec : simpl never.
......@@ -2,29 +2,29 @@ From stdpp Require Export countable coPset.
From stdpp Require Import options.
Definition namespace := list positive.
Instance namespace_eq_dec : EqDecision namespace := _.
Instance namespace_countable : Countable namespace := _.
Typeclasses Opaque namespace.
Global Instance namespace_eq_dec : EqDecision namespace := _.
Global Instance namespace_countable : Countable namespace := _.
Global Typeclasses Opaque namespace.
Definition nroot : namespace := nil.
Definition ndot_def `{Countable A} (N : namespace) (x : A) : namespace :=
Local Definition ndot_def `{Countable A} (N : namespace) (x : A) : namespace :=
encode x :: N.
Definition ndot_aux : seal (@ndot_def). by eexists. Qed.
Local Definition ndot_aux : seal (@ndot_def). by eexists. Qed.
Definition ndot {A A_dec A_count}:= unseal ndot_aux A A_dec A_count.
Definition ndot_eq : @ndot = @ndot_def := seal_eq ndot_aux.
Local Definition ndot_unseal : @ndot = @ndot_def := seal_eq ndot_aux.
Definition nclose_def (N : namespace) : coPset :=
Local Definition nclose_def (N : namespace) : coPset :=
coPset_suffixes (positives_flatten N).
Definition nclose_aux : seal (@nclose_def). by eexists. Qed.
Instance nclose : UpClose namespace coPset := unseal nclose_aux.
Definition nclose_eq : @nclose = @nclose_def := seal_eq nclose_aux.
Local Definition nclose_aux : seal (@nclose_def). by eexists. Qed.
Global Instance nclose : UpClose namespace coPset := unseal nclose_aux.
Local Definition nclose_unseal : @nclose = @nclose_def := seal_eq nclose_aux.
Notation "N .@ x" := (ndot N x)
(at level 19, left associativity, format "N .@ x") : stdpp_scope.
Notation "(.@)" := ndot (only parsing) : stdpp_scope.
Instance ndisjoint : Disjoint namespace := λ N1 N2, nclose N1 ## nclose N2.
Global Instance ndisjoint : Disjoint namespace := λ N1 N2, nclose N1 ## nclose N2.
Section namespace.
Context `{Countable A}.
......@@ -33,14 +33,14 @@ Section namespace.
Implicit Types E : coPset.
Global Instance ndot_inj : Inj2 (=) (=) (=) (@ndot A _ _).
Proof. intros N1 x1 N2 x2; rewrite !ndot_eq; naive_solver. Qed.
Proof. intros N1 x1 N2 x2; rewrite !ndot_unseal; naive_solver. Qed.
Lemma nclose_nroot : nroot = (:coPset).
Proof. rewrite nclose_eq. by apply (sig_eq_pi _). Qed.
Proof. rewrite nclose_unseal. by apply (sig_eq_pi _). Qed.
Lemma nclose_subseteq N x : N.@x (N : coPset).
Proof.
intros p. unfold up_close. rewrite !nclose_eq, !ndot_eq.
intros p. unfold up_close. rewrite !nclose_unseal, !ndot_unseal.
unfold nclose_def, ndot_def; rewrite !elem_coPset_suffixes.
intros [q ->]. destruct (positives_flatten_suffix N (ndot_def N x)) as [q' ?].
{ by exists [encode x]. }
......@@ -51,11 +51,11 @@ Section namespace.
Proof. intros. etrans; eauto using nclose_subseteq. Qed.
Lemma nclose_infinite N : ¬set_finite ( N : coPset).
Proof. rewrite nclose_eq. apply coPset_suffixes_infinite. Qed.
Proof. rewrite nclose_unseal. apply coPset_suffixes_infinite. Qed.
Lemma ndot_ne_disjoint N x y : x y N.@x ## N.@y.
Proof.
intros Hxy a. unfold up_close. rewrite !nclose_eq, !ndot_eq.
intros Hxy a. unfold up_close. rewrite !nclose_unseal, !ndot_unseal.
unfold nclose_def, ndot_def; rewrite !elem_coPset_suffixes.
intros [qx ->] [qy Hqy].
revert Hqy. by intros [= ?%(inj encode)]%positives_flatten_suffix_eq.
......@@ -79,30 +79,61 @@ Create HintDb ndisj discriminated.
(** If-and-only-if rules. Well, not quite, but for the fragment we are
considering they are. *)
Local Definition coPset_subseteq_difference_r := subseteq_difference_r (C:=coPset).
Hint Resolve coPset_subseteq_difference_r : ndisj.
Global Hint Resolve coPset_subseteq_difference_r : ndisj.
Local Definition coPset_empty_subseteq := empty_subseteq (C:=coPset).
Hint Resolve coPset_empty_subseteq : ndisj.
Global Hint Resolve coPset_empty_subseteq : ndisj.
Local Definition coPset_union_least := union_least (C:=coPset).
Hint Resolve coPset_union_least : ndisj.
Global Hint Resolve coPset_union_least : ndisj.
(** For goals like [X ⊆ L ∪ R], backtrack for the two sides. *)
Local Definition coPset_union_subseteq_l' := union_subseteq_l' (C:=coPset).
Global Hint Resolve coPset_union_subseteq_l' | 50 : ndisj.
Local Definition coPset_union_subseteq_r' := union_subseteq_r' (C:=coPset).
Global Hint Resolve coPset_union_subseteq_r' | 50 : ndisj.
(** Fallback, loses lots of information but lets other rules make progress. *)
Local Definition coPset_subseteq_difference_l := subseteq_difference_l (C:=coPset).
Hint Resolve coPset_subseteq_difference_l | 100 : ndisj.
Hint Resolve nclose_subseteq' | 100 : ndisj.
Global Hint Resolve coPset_subseteq_difference_l | 100 : ndisj.
Global Hint Resolve nclose_subseteq' | 100 : ndisj.
(** Rules for goals of the form [_ ## _] *)
(** The base rule that we want to ultimately get down to. *)
Hint Extern 0 (_ ## _) => apply ndot_ne_disjoint; congruence : ndisj.
Global Hint Extern 0 (_ ## _) => apply ndot_ne_disjoint; congruence : ndisj.
(** Trivial cases. *)
Local Definition coPset_disjoint_empty_l := disjoint_empty_l (C:=coPset).
Global Hint Resolve coPset_disjoint_empty_l : ndisj.
Local Definition coPset_disjoint_empty_r := disjoint_empty_r (C:=coPset).
Global Hint Resolve coPset_disjoint_empty_r : ndisj.
(** If-and-only-if rules for ∪ on the left/right. *)
Local Definition coPset_disjoint_union_l X1 X2 Y :=
proj2 (disjoint_union_l (C:=coPset) X1 X2 Y).
Global Hint Resolve coPset_disjoint_union_l : ndisj.
Local Definition coPset_disjoint_union_r X Y1 Y2 :=
proj2 (disjoint_union_r (C:=coPset) X Y1 Y2).
Global Hint Resolve coPset_disjoint_union_r : ndisj.
(** We prefer ∖ on the left of ## (for the [disjoint_difference] lemmas to
apply), so try moving it there. *)
Global Hint Extern 10 (_ ## (_ _)) =>
lazymatch goal with
| |- (_ _) ## _ => fail (* ∖ on both sides, leave it be *)
| |- _ => symmetry
end : ndisj.
(** Before we apply disjoint_difference, let's make sure we normalize the goal
to [_ ∖ (_ ∪ _)]. *)
Local Lemma coPset_difference_difference (X1 X2 X3 Y : coPset) :
X1 (X2 X3) ## Y
X1 X2 X3 ## Y.
Proof. set_solver. Qed.
Global Hint Resolve coPset_difference_difference | 20 : ndisj.
(** Fallback, loses lots of information but lets other rules make progress.
Tests show trying [disjoint_difference_l1] first gives better performance. *)
Local Definition coPset_disjoint_difference_l1 := disjoint_difference_l1 (C:=coPset).
Hint Resolve coPset_disjoint_difference_l1 | 50 : ndisj.
Global Hint Resolve coPset_disjoint_difference_l1 | 50 : ndisj.
Local Definition coPset_disjoint_difference_l2 := disjoint_difference_l2 (C:=coPset).
Hint Resolve coPset_disjoint_difference_l2 | 100 : ndisj.
Hint Resolve ndot_preserve_disjoint_l ndot_preserve_disjoint_r | 100 : ndisj.
Global Hint Resolve coPset_disjoint_difference_l2 | 100 : ndisj.
Global Hint Resolve ndot_preserve_disjoint_l ndot_preserve_disjoint_r | 100 : ndisj.
Ltac solve_ndisj :=
repeat match goal with
| H : _ _ _ |- _ => apply union_subseteq in H as [??]
end;
solve [eauto 12 with ndisj].
Hint Extern 1000 => solve_ndisj : solve_ndisj.
Global Hint Extern 1000 => solve_ndisj : solve_ndisj.
......@@ -38,14 +38,14 @@ approach based on reflection would be better, but for small inputs, the overhead
of reification will probably not be worth it. *)
Class NatCancel (m n m' n' : nat) := nat_cancel : m' + n = m + n'.
Hint Mode NatCancel ! ! - - : typeclass_instances.
Global Hint Mode NatCancel ! ! - - : typeclass_instances.
Module nat_cancel.
Class NatCancelL (m n m' n' : nat) := nat_cancel_l : m' + n = m + n'.
Hint Mode NatCancelL ! ! - - : typeclass_instances.
Global Hint Mode NatCancelL ! ! - - : typeclass_instances.
Class NatCancelR (m n m' n' : nat) := nat_cancel_r : NatCancelL m n m' n'.
Hint Mode NatCancelR ! ! - - : typeclass_instances.
Existing Instance nat_cancel_r | 100.
Global Hint Mode NatCancelR ! ! - - : typeclass_instances.
Global Existing Instance nat_cancel_r | 100.
(** The implementation of the canceler is highly non-deterministic, but since
it will always succeed, no backtracking will ever be performed. In order to
......@@ -54,49 +54,49 @@ Module nat_cancel.
https://gitlab.mpi-sws.org/FP/iris-coq/issues/153
we wrap the entire canceler in the [NoBackTrack] class. *)
Instance nat_cancel_start m n m' n' :
Global Instance nat_cancel_start m n m' n' :
TCNoBackTrack (NatCancelL m n m' n') NatCancel m n m' n'.
Proof. by intros [?]. Qed.
Class MakeNatS (n1 n2 m : nat) := make_nat_S : m = n1 + n2.
Instance make_nat_S_0_l n : MakeNatS 0 n n.
Global Instance make_nat_S_0_l n : MakeNatS 0 n n.
Proof. done. Qed.
Instance make_nat_S_1 n : MakeNatS 1 n (S n).
Global Instance make_nat_S_1 n : MakeNatS 1 n (S n).
Proof. done. Qed.
Class MakeNatPlus (n1 n2 m : nat) := make_nat_plus : m = n1 + n2.
Instance make_nat_plus_0_l n : MakeNatPlus 0 n n.
Class MakeNatAdd (n1 n2 m : nat) := make_nat_add : m = n1 + n2.
Global Instance make_nat_add_0_l n : MakeNatAdd 0 n n.
Proof. done. Qed.
Instance make_nat_plus_0_r n : MakeNatPlus n 0 n.
Proof. unfold MakeNatPlus. by rewrite Nat.add_0_r. Qed.
Instance make_nat_plus_default n1 n2 : MakeNatPlus n1 n2 (n1 + n2) | 100.
Global Instance make_nat_add_0_r n : MakeNatAdd n 0 n.
Proof. unfold MakeNatAdd. by rewrite Nat.add_0_r. Qed.
Global Instance make_nat_add_default n1 n2 : MakeNatAdd n1 n2 (n1 + n2) | 100.
Proof. done. Qed.
Instance nat_cancel_leaf_here m : NatCancelR m m 0 0 | 0.
Global Instance nat_cancel_leaf_here m : NatCancelR m m 0 0 | 0.
Proof. by unfold NatCancelR, NatCancelL. Qed.
Instance nat_cancel_leaf_else m n : NatCancelR m n m n | 100.
Global Instance nat_cancel_leaf_else m n : NatCancelR m n m n | 100.
Proof. by unfold NatCancelR. Qed.
Instance nat_cancel_leaf_plus m m' m'' n1 n2 n1' n2' n1'n2' :
Global Instance nat_cancel_leaf_add m m' m'' n1 n2 n1' n2' n1'n2' :
NatCancelR m n1 m' n1' NatCancelR m' n2 m'' n2'
MakeNatPlus n1' n2' n1'n2' NatCancelR m (n1 + n2) m'' n1'n2' | 2.
Proof. unfold NatCancelR, NatCancelL, MakeNatPlus. lia. Qed.
Instance nat_cancel_leaf_S_here m n m' n' :
MakeNatAdd n1' n2' n1'n2' NatCancelR m (n1 + n2) m'' n1'n2' | 2.
Proof. unfold NatCancelR, NatCancelL, MakeNatAdd. lia. Qed.
Global Instance nat_cancel_leaf_S_here m n m' n' :
NatCancelR m n m' n' NatCancelR (S m) (S n) m' n' | 3.
Proof. unfold NatCancelR, NatCancelL. lia. Qed.
Instance nat_cancel_leaf_S_else m n m' n' :
Global Instance nat_cancel_leaf_S_else m n m' n' :
NatCancelR m n m' n' NatCancelR m (S n) m' (S n') | 4.
Proof. unfold NatCancelR, NatCancelL. lia. Qed.
(** The instance [nat_cancel_S_both] is redundant, but may reduce proof search
quite a bit, e.g. when canceling constants in constants. *)
Instance nat_cancel_S_both m n m' n' :
Global Instance nat_cancel_S_both m n m' n' :
NatCancelL m n m' n' NatCancelL (S m) (S n) m' n' | 1.
Proof. unfold NatCancelL. lia. Qed.
Instance nat_cancel_plus m1 m2 m1' m2' m1'm2' n n' n'' :
Global Instance nat_cancel_add m1 m2 m1' m2' m1'm2' n n' n'' :
NatCancelL m1 n m1' n' NatCancelL m2 n' m2' n''
MakeNatPlus m1' m2' m1'm2' NatCancelL (m1 + m2) n m1'm2' n'' | 2.
Proof. unfold NatCancelL, MakeNatPlus. lia. Qed.
Instance nat_cancel_S m m' m'' Sm' n n' n'' :
MakeNatAdd m1' m2' m1'm2' NatCancelL (m1 + m2) n m1'm2' n'' | 2.
Proof. unfold NatCancelL, MakeNatAdd. lia. Qed.
Global Instance nat_cancel_S m m' m'' Sm' n n' n'' :
NatCancelL m n m' n' NatCancelR 1 n' m'' n''
MakeNatS m'' m' Sm' NatCancelL (S m) n Sm' n'' | 3.
Proof. unfold NatCancelR, NatCancelL, MakeNatS. lia. Qed.
......
......@@ -7,7 +7,7 @@ From stdpp Require Import options.
Notation natmap_raw A := (list (option A)).
Definition natmap_wf {A} (l : natmap_raw A) :=
match last l with None => True | Some x => is_Some x end.
Instance natmap_wf_pi {A} (l : natmap_raw A) : ProofIrrel (natmap_wf l).
Global Instance natmap_wf_pi {A} (l : natmap_raw A) : ProofIrrel (natmap_wf l).
Proof. unfold natmap_wf. case_match; apply _. Qed.
Lemma natmap_wf_inv {A} (o : option A) (l : natmap_raw A) :
......@@ -26,9 +26,11 @@ Record natmap (A : Type) : Type := NatMap {
natmap_car : natmap_raw A;
natmap_prf : natmap_wf natmap_car
}.
Arguments NatMap {_} _ _ : assert.
Arguments natmap_car {_} _ : assert.
Arguments natmap_prf {_} _ : assert.
Add Printing Constructor natmap.
Global Arguments NatMap {_} _ _ : assert.
Global Arguments natmap_car {_} _ : assert.
Global Arguments natmap_prf {_} _ : assert.
Lemma natmap_eq {A} (m1 m2 : natmap A) :
m1 = m2 natmap_car m1 = natmap_car m2.
Proof.
......@@ -41,8 +43,8 @@ Global Instance natmap_eq_dec `{EqDecision A} : EqDecision (natmap A) := λ m1 m
| right H => right (H proj1 (natmap_eq m1 m2))
end.
Instance natmap_empty {A} : Empty (natmap A) := NatMap [] I.
Instance natmap_lookup {A} : Lookup nat A (natmap A) := λ i m,
Global Instance natmap_empty {A} : Empty (natmap A) := NatMap [] I.
Global Instance natmap_lookup {A} : Lookup nat A (natmap A) := λ i m,
let (l,_) := m in mjoin (l !! i).
Fixpoint natmap_singleton_raw {A} (i : nat) (x : A) : natmap_raw A :=
......@@ -56,7 +58,7 @@ Proof. induction i; simpl; auto. Qed.
Lemma natmap_lookup_singleton_raw_ne {A} (i j : nat) (x : A) :
i j mjoin (natmap_singleton_raw i x !! j) = None.
Proof. revert j; induction i; intros [|?]; simpl; auto with congruence. Qed.
Hint Rewrite @natmap_lookup_singleton_raw : natmap.
Local Hint Rewrite @natmap_lookup_singleton_raw : natmap.
Definition natmap_cons_canon {A} (o : option A) (l : natmap_raw A) :=
match o, l with None, [] => [] | _, _ => o :: l end.
......@@ -69,9 +71,9 @@ Proof. by destruct o, l. Qed.
Lemma natmap_cons_canon_S {A} (o : option A) (l : natmap_raw A) i :
natmap_cons_canon o l !! S i = l !! i.
Proof. by destruct o, l. Qed.
Hint Rewrite @natmap_cons_canon_O @natmap_cons_canon_S : natmap.
Local Hint Rewrite @natmap_cons_canon_O @natmap_cons_canon_S : natmap.
Definition natmap_alter_raw {A} (f : option A option A) :
Definition natmap_partial_alter_raw {A} (f : option A option A) :
nat natmap_raw A natmap_raw A :=
fix go i l {struct l} :=
match l with
......@@ -84,28 +86,44 @@ Definition natmap_alter_raw {A} (f : option A → option A) :
| 0 => natmap_cons_canon (f o) l | S i => natmap_cons_canon o (go i l)
end
end.
Lemma natmap_alter_wf {A} (f : option A option A) i l :
natmap_wf l natmap_wf (natmap_alter_raw f i l).
Lemma natmap_partial_alter_wf {A} (f : option A option A) i l :
natmap_wf l natmap_wf (natmap_partial_alter_raw f i l).
Proof.
revert i. induction l; [intro | intros [|?]]; simpl; repeat case_match;
eauto using natmap_singleton_wf, natmap_cons_canon_wf, natmap_wf_inv.
Qed.
Instance natmap_alter {A} : PartialAlter nat A (natmap A) := λ f i m,
let (l,Hl) := m in NatMap _ (natmap_alter_wf f i l Hl).
Lemma natmap_lookup_alter_raw {A} (f : option A option A) i l :
mjoin (natmap_alter_raw f i l !! i) = f (mjoin (l !! i)).
Global Instance natmap_partial_alter {A} : PartialAlter nat A (natmap A) := λ f i m,
let (l,Hl) := m in NatMap _ (natmap_partial_alter_wf f i l Hl).
Lemma natmap_lookup_partial_alter_raw {A} (f : option A option A) i l :
mjoin (natmap_partial_alter_raw f i l !! i) = f (mjoin (l !! i)).
Proof.
revert i. induction l; intros [|?]; simpl; repeat case_match; simpl;
autorewrite with natmap; auto.
Qed.
Lemma natmap_lookup_alter_raw_ne {A} (f : option A option A) i j l :
i j mjoin (natmap_alter_raw f i l !! j) = mjoin (l !! j).
Lemma natmap_lookup_partial_alter_raw_ne {A} (f : option A option A) i j l :
i j mjoin (natmap_partial_alter_raw f i l !! j) = mjoin (l !! j).
Proof.
revert i j. induction l; intros [|?] [|?] ?; simpl;
repeat case_match; simpl; autorewrite with natmap; auto with congruence.
rewrite natmap_lookup_singleton_raw_ne; congruence.
Qed.
Definition natmap_fmap_raw {A B} (f : A B) : natmap_raw A natmap_raw B :=
fmap (fmap (M:=option) f).
Lemma natmap_fmap_wf {A B} (f : A B) l :
natmap_wf l natmap_wf (natmap_fmap_raw f l).
Proof.
unfold natmap_fmap_raw, natmap_wf. rewrite fmap_last.
destruct (last l); [|done]. by apply fmap_is_Some.
Qed.
Lemma natmap_lookup_fmap_raw {A B} (f : A B) i l :
mjoin (natmap_fmap_raw f l !! i) = f <$> mjoin (l !! i).
Proof.
unfold natmap_fmap_raw. rewrite list_lookup_fmap. by destruct (l !! i).
Qed.
Global Instance natmap_fmap : FMap natmap := λ A B f m,
let (l,Hl) := m in NatMap (natmap_fmap_raw f l) (natmap_fmap_wf _ _ Hl).
Definition natmap_omap_raw {A B} (f : A option B) :
natmap_raw A natmap_raw B :=
fix go l :=
......@@ -118,7 +136,7 @@ Lemma natmap_lookup_omap_raw {A B} (f : A → option B) l i :
Proof.
revert i. induction l; intros [|?]; simpl; autorewrite with natmap; auto.
Qed.
Hint Rewrite @natmap_lookup_omap_raw : natmap.
Local Hint Rewrite @natmap_lookup_omap_raw : natmap.
Global Instance natmap_omap: OMap natmap := λ A B f m,
let (l,Hl) := m in NatMap _ (natmap_omap_raw_wf f _ Hl).
......@@ -128,7 +146,7 @@ Definition natmap_merge_raw {A B C} (f : option A → option B → option C) :
match l1, l2 with
| [], l2 => natmap_omap_raw (f None Some) l2
| l1, [] => natmap_omap_raw (flip f None Some) l1
| o1 :: l1, o2 :: l2 => natmap_cons_canon (f o1 o2) (go l1 l2)
| o1 :: l1, o2 :: l2 => natmap_cons_canon (diag_None f o1 o2) (go l1 l2)
end.
Lemma natmap_merge_wf {A B C} (f : option A option B option C) l1 l2 :
natmap_wf l1 natmap_wf l2 natmap_wf (natmap_merge_raw f l1 l2).
......@@ -136,76 +154,75 @@ Proof.
revert l2. induction l1; intros [|??]; simpl;
eauto using natmap_omap_raw_wf, natmap_cons_canon_wf, natmap_wf_inv.
Qed.
Lemma natmap_lookup_merge_raw {A B C} (f : option A option B option C)
l1 l2 i : f None None = None
mjoin (natmap_merge_raw f l1 l2 !! i) = f (mjoin (l1 !! i)) (mjoin (l2 !! i)).
Lemma natmap_lookup_merge_raw {A B C} (f : option A option B option C) l1 l2 i :
mjoin (natmap_merge_raw f l1 l2 !! i) = diag_None f (mjoin (l1 !! i)) (mjoin (l2 !! i)).
Proof.
intros. revert i l2. induction l1; intros [|?] [|??]; simpl;
autorewrite with natmap; auto;
match goal with |- context [?o ≫= _] => by destruct o end.
Qed.
Instance natmap_merge: Merge natmap := λ A B C f m1 m2,
Global Instance natmap_merge: Merge natmap := λ A B C f m1 m2,
let (l1, Hl1) := m1 in let (l2, Hl2) := m2 in
NatMap (natmap_merge_raw f l1 l2) (natmap_merge_wf _ _ _ Hl1 Hl2).
Fixpoint natmap_to_list_raw {A} (i : nat) (l : natmap_raw A) : list (nat * A) :=
Fixpoint natmap_fold_raw {A B} (f : nat A B B)
(j : nat) (b : B) (l : natmap_raw A) : B :=
match l with
| [] => []
| None :: l => natmap_to_list_raw (S i) l
| Some x :: l => (i,x) :: natmap_to_list_raw (S i) l
| [] => b
| mx :: l => natmap_fold_raw f (S j)
match mx with Some x => f j x b | None => b end l
end.
Lemma natmap_elem_of_to_list_raw_aux {A} j (l : natmap_raw A) i x :
(i,x) natmap_to_list_raw j l i', i = i' + j mjoin (l !! i') = Some x.
Proof.
split.
- revert j. induction l as [|[y|] l IH]; intros j; simpl.
+ by rewrite elem_of_nil.
+ rewrite elem_of_cons. intros [?|?]; simplify_eq.
* by exists 0.
* destruct (IH (S j)) as (i'&?&?); auto.
exists (S i'); simpl; auto with lia.
+ intros. destruct (IH (S j)) as (i'&?&?); auto.
exists (S i'); simpl; auto with lia.
- intros (i'&?&Hi'). subst. revert i' j Hi'.
induction l as [|[y|] l IH]; intros i j ?; simpl.
+ done.
+ destruct i as [|i]; simplify_eq/=; [left|].
right. rewrite <-Nat.add_succ_r. by apply (IH i (S j)).
+ destruct i as [|i]; simplify_eq/=.
rewrite <-Nat.add_succ_r. by apply (IH i (S j)).
Qed.
Lemma natmap_elem_of_to_list_raw {A} (l : natmap_raw A) i x :
(i,x) natmap_to_list_raw 0 l mjoin (l !! i) = Some x.
Proof.
rewrite natmap_elem_of_to_list_raw_aux. setoid_rewrite Nat.add_0_r.
naive_solver.
Qed.
Lemma natmap_to_list_raw_nodup {A} i (l : natmap_raw A) :
NoDup (natmap_to_list_raw i l).
Proof.
revert i. induction l as [|[?|] ? IH]; simpl; try constructor; auto.
rewrite natmap_elem_of_to_list_raw_aux. intros (?&?&?). lia.
Qed.
Instance natmap_to_list {A} : FinMapToList nat A (natmap A) := λ m,
let (l,_) := m in natmap_to_list_raw 0 l.
Definition natmap_map_raw {A B} (f : A B) : natmap_raw A natmap_raw B :=
fmap (fmap f).
Lemma natmap_map_wf {A B} (f : A B) l :
natmap_wf l natmap_wf (natmap_map_raw f l).
Proof.
unfold natmap_map_raw, natmap_wf. rewrite fmap_last.
destruct (last l); [|done]. by apply fmap_is_Some.
Qed.
Lemma natmap_lookup_map_raw {A B} (f : A B) i l :
mjoin (natmap_map_raw f l !! i) = f <$> mjoin (l !! i).
Lemma natmap_fold_raw_cons_canon {A B} (f : nat A B B) j b mx l :
natmap_fold_raw f j b (natmap_cons_canon mx l)
= natmap_fold_raw f (S j) match mx with Some x => f j x b | None => b end l.
Proof. by destruct mx, l. Qed.
Lemma natmap_fold_raw_ind {A} (P : natmap_raw A Prop) :
P []
( i x l,
natmap_wf l
mjoin (l !! i) = None
( j A' B (f : nat A' B B) (g : A A') b x',
natmap_fold_raw f j b
(natmap_partial_alter_raw (λ _, Some x') i (natmap_fmap_raw g l))
= f (i + j) x' (natmap_fold_raw f j b (natmap_fmap_raw g l)))
P l P (natmap_partial_alter_raw (λ _, Some x) i l))
l, natmap_wf l P l.
Proof.
unfold natmap_map_raw. rewrite list_lookup_fmap. by destruct (l !! i).
intros Hemp Hinsert l Hl. revert P Hemp Hinsert Hl.
induction l as [|mx l IH]; intros P Hemp Hinsert Hxl; simpl in *; [done|].
assert (natmap_wf l) as Hl by (by destruct l).
replace (mx :: l) with (natmap_cons_canon mx l)
by (destruct mx, l; done || by destruct Hxl).
apply (IH (λ l, P (natmap_cons_canon mx l))); [..|done].
{ destruct mx as [x|]; [|done].
change (natmap_cons_canon (Some x) [])
with (natmap_partial_alter_raw (λ _, Some x) 0 []).
by apply (Hinsert 0). }
intros i x l' Hl' ? Hfold.
replace (natmap_cons_canon mx (natmap_partial_alter_raw (λ _, Some x) i l'))
with (natmap_partial_alter_raw (λ _, Some x) (S i) (natmap_cons_canon mx l'))
by (by destruct i, mx, l').
apply Hinsert.
- by apply natmap_cons_canon_wf.
- by destruct mx, l'.
- intros j A' B f g b x'.
replace (natmap_partial_alter_raw (λ _, Some x') (S i)
(natmap_fmap_raw g (natmap_cons_canon mx l')))
with (natmap_cons_canon (g <$> mx)
(natmap_partial_alter_raw (λ _, Some x') i (natmap_fmap_raw g l')))
by (by destruct i, mx, l').
replace (natmap_fmap_raw g (natmap_cons_canon mx l'))
with (natmap_cons_canon (g <$> mx) (natmap_fmap_raw g l'))
by (by destruct i, mx, l').
rewrite !natmap_fold_raw_cons_canon, Nat.add_succ_comm. simpl; auto.
Qed.
Instance natmap_map: FMap natmap := λ A B f m,
let (l,Hl) := m in NatMap (natmap_map_raw f l) (natmap_map_wf _ _ Hl).
Instance: FinMap nat natmap.
Global Instance natmap_fold {A} : MapFold nat A (natmap A) := λ B f d m,
let (l,_) := m in natmap_fold_raw f 0 d l.
Global Instance natmap_map : FinMap nat natmap.
Proof.
split.
- unfold lookup, natmap_lookup. intros A [l1 Hl1] [l2 Hl2] E.
......@@ -224,13 +241,20 @@ Proof.
+ by specialize (E 0).
+ f_equal. apply IH; eauto using natmap_wf_inv. intros i. apply (E (S i)).
- done.
- intros ?? [??] ?. apply natmap_lookup_alter_raw.
- intros ?? [??] ??. apply natmap_lookup_alter_raw_ne.
- intros ??? [??] ?. apply natmap_lookup_map_raw.
- intros ? [??]. by apply natmap_to_list_raw_nodup.
- intros ? [??] ??. by apply natmap_elem_of_to_list_raw.
- intros ?? [??] ?. apply natmap_lookup_partial_alter_raw.
- intros ?? [??] ??. apply natmap_lookup_partial_alter_raw_ne.
- intros ??? [??] ?. apply natmap_lookup_fmap_raw.
- intros ??? [??] ?. by apply natmap_lookup_omap_raw.
- intros ????? [??] [??] ?. by apply natmap_lookup_merge_raw.
- intros ???? [??] [??] ?. apply natmap_lookup_merge_raw.
- done.
- intros A P Hemp Hins [l Hl]. refine (natmap_fold_raw_ind
(λ l, Hl, P (NatMap l Hl)) _ _ l Hl Hl); clear l Hl.
{ intros Hl.
by replace (NatMap _ Hl) with ( : natmap A) by (by apply natmap_eq). }
intros i x l Hl ? Hfold H Hxl.
replace (NatMap _ Hxl) with (<[i:=x]> (NatMap _ Hl)) by (by apply natmap_eq).
apply Hins; [done| |done].
intros A' B f g b x'. rewrite <-(Nat.add_0_r i) at 2. apply (Hfold 0).
Qed.
Fixpoint strip_Nones {A} (l : list (option A)) : list (option A) :=
......@@ -256,8 +280,8 @@ Qed.
(** Finally, we can construct sets of [nat]s satisfying extensional equality. *)
Notation natset := (mapset natmap).
Instance natmap_dom {A} : Dom (natmap A) natset := mapset_dom.
Instance: FinMapDom nat natmap natset := mapset_dom_spec.
Global Instance natmap_dom {A} : Dom (natmap A) natset := mapset_dom.
Global Instance: FinMapDom nat natmap natset := mapset_dom_spec.
(* Fixpoint avoids this definition from being unfolded *)
Definition bools_to_natset (βs : list bool) : natset :=
......@@ -282,11 +306,11 @@ Lemma bools_to_natset_union βs1 βs2 :
bools_to_natset (βs1 ||* βs2) = bools_to_natset βs1 bools_to_natset βs2.
Proof.
rewrite <-Forall2_same_length; intros Hβs.
apply elem_of_equiv_L. intros i. rewrite elem_of_union, !elem_of_bools_to_natset.
apply set_eq. intros i. rewrite elem_of_union, !elem_of_bools_to_natset.
revert i. induction Hβs as [|[] []]; intros [|?]; naive_solver.
Qed.
Lemma natset_to_bools_length (X : natset) sz : length (natset_to_bools sz X) = sz.
Proof. apply resize_length. Qed.
Lemma length_natset_to_bools (X : natset) sz : length (natset_to_bools sz X) = sz.
Proof. apply length_resize. Qed.
Lemma lookup_natset_to_bools_ge sz X i : sz i natset_to_bools sz X !! i = None.
Proof. by apply lookup_resize_old. Qed.
Lemma lookup_natset_to_bools sz X i β :
......@@ -296,9 +320,9 @@ Proof.
intros. destruct (mapset_car X) as [l ?]; simpl.
destruct (l !! i) as [mu|] eqn:Hmu; simpl.
{ rewrite lookup_resize, list_lookup_fmap, Hmu
by (rewrite ?fmap_length; eauto using lookup_lt_Some).
by (rewrite ?length_fmap; eauto using lookup_lt_Some).
destruct mu as [[]|], β; simpl; intuition congruence. }
rewrite lookup_resize_new by (rewrite ?fmap_length;
rewrite lookup_resize_new by (rewrite ?length_fmap;
eauto using lookup_ge_None_1); destruct β; intuition congruence.
Qed.
Lemma lookup_natset_to_bools_true sz X i :
......
......@@ -7,78 +7,68 @@ From stdpp Require Import options.
Local Open Scope N_scope.
Record Nmap (A : Type) : Type := NMap { Nmap_0 : option A; Nmap_pos : Pmap A }.
Arguments Nmap_0 {_} _ : assert.
Arguments Nmap_pos {_} _ : assert.
Arguments NMap {_} _ _ : assert.
Add Printing Constructor Nmap.
Global Arguments Nmap_0 {_} _ : assert.
Global Arguments Nmap_pos {_} _ : assert.
Global Arguments NMap {_} _ _ : assert.
Instance Nmap_eq_dec `{EqDecision A} : EqDecision (Nmap A).
Global Instance Nmap_eq_dec `{EqDecision A} : EqDecision (Nmap A).
Proof.
refine (λ t1 t2,
match t1, t2 with
| NMap x t1, NMap y t2 => cast_if_and (decide (x = y)) (decide (t1 = t2))
end); abstract congruence.
Defined.
Instance Nempty {A} : Empty (Nmap A) := NMap None ∅.
Global Opaque Nempty.
Instance Nlookup {A} : Lookup N A (Nmap A) := λ i t,
Global Instance Nmap_empty {A} : Empty (Nmap A) := NMap None ∅.
Global Opaque Nmap_empty.
Global Instance Nmap_lookup {A} : Lookup N A (Nmap A) := λ i t,
match i with
| N0 => Nmap_0 t
| Npos p => Nmap_pos t !! p
| 0 => Nmap_0 t
| N.pos p => Nmap_pos t !! p
end.
Instance Npartial_alter {A} : PartialAlter N A (Nmap A) := λ f i t,
Global Instance Nmap_partial_alter {A} : PartialAlter N A (Nmap A) := λ f i t,
match i, t with
| N0, NMap o t => NMap (f o) t
| Npos p, NMap o t => NMap o (partial_alter f p t)
| 0, NMap o t => NMap (f o) t
| N.pos p, NMap o t => NMap o (partial_alter f p t)
end.
Instance Nto_list {A} : FinMapToList N A (Nmap A) := λ t,
match t with
| NMap o t =>
from_option (λ x, [(0,x)]) [] o ++ (prod_map Npos id <$> map_to_list t)
end.
Instance Nomap: OMap Nmap := λ A B f t,
Global Instance Nmap_fmap: FMap Nmap := λ A B f t,
match t with NMap o t => NMap (f <$> o) (f <$> t) end.
Global Instance Nmap_omap: OMap Nmap := λ A B f t,
match t with NMap o t => NMap (o ≫= f) (omap f t) end.
Instance Nmerge: Merge Nmap := λ A B C f t1 t2,
Global Instance Nmap_merge: Merge Nmap := λ A B C f t1 t2,
match t1, t2 with
| NMap o1 t1, NMap o2 t2 => NMap (f o1 o2) (merge f t1 t2)
| NMap o1 t1, NMap o2 t2 => NMap (diag_None f o1 o2) (merge f t1 t2)
end.
Global Instance Nmap_fold {A} : MapFold N A (Nmap A) := λ B f d t,
match t with
| NMap mx t =>
map_fold (f N.pos) match mx with Some x => f 0 x d | None => d end t
end.
Instance Nfmap: FMap Nmap := λ A B f t,
match t with NMap o t => NMap (f <$> o) (f <$> t) end.
Instance: FinMap N Nmap.
Global Instance Nmap_map: FinMap N Nmap.
Proof.
split.
- intros ? [??] [??] H. f_equal; [apply (H 0)|].
apply map_eq. intros i. apply (H (Npos i)).
apply map_eq. intros i. apply (H (N.pos i)).
- by intros ? [|?].
- intros ? f [? t] [|i]; simpl; [done |]. apply lookup_partial_alter.
- intros ? f [? t] [|i] [|j]; simpl; try intuition congruence.
intros. apply lookup_partial_alter_ne. congruence.
- intros ??? [??] []; simpl; [done|]. apply lookup_fmap.
- intros ? [[x|] t]; unfold map_to_list; simpl.
+ constructor.
* rewrite elem_of_list_fmap. by intros [[??] [??]].
* by apply (NoDup_fmap _), NoDup_map_to_list.
+ apply (NoDup_fmap _), NoDup_map_to_list.
- intros ? t i x. unfold map_to_list. split.
+ destruct t as [[y|] t]; simpl.
* rewrite elem_of_cons, elem_of_list_fmap.
intros [? | [[??] [??]]]; simplify_eq/=; [done |].
by apply elem_of_map_to_list.
* rewrite elem_of_list_fmap; intros [[??] [??]]; simplify_eq/=.
by apply elem_of_map_to_list.
+ destruct t as [[y|] t]; simpl.
* rewrite elem_of_cons, elem_of_list_fmap.
destruct i as [|i]; simpl; [intuition congruence |].
intros. right. exists (i, x). by rewrite elem_of_map_to_list.
* rewrite elem_of_list_fmap.
destruct i as [|i]; simpl; [done |].
intros. exists (i, x). by rewrite elem_of_map_to_list.
- intros ?? f [??] [|?]; simpl; [done|]; apply (lookup_omap f).
- intros ??? f ? [??] [??] [|?]; simpl; [done|]; apply (lookup_merge f).
- intros ??? f [??] [??] [|?]; simpl; [done|]; apply (lookup_merge f).
- done.
- intros A P Hemp Hins [mx t].
induction t as [|i x t ? Hfold IH] using map_fold_fmap_ind.
{ destruct mx as [x|]; [|done].
replace (NMap (Some x) ) with (<[0:=x]> : Nmap _) by done.
by apply Hins. }
apply (Hins (N.pos i) x (NMap mx t)); [done| |done].
intros A' B f g b. apply Hfold.
Qed.
(** * Finite sets *)
(** We construct sets of [N]s satisfying extensional equality. *)
Notation Nset := (mapset Nmap).
Instance Nmap_dom {A} : Dom (Nmap A) Nset := mapset_dom.
Instance: FinMapDom N Nmap Nset := mapset_dom_spec.
Global Instance Nmap_dom {A} : Dom (Nmap A) Nset := mapset_dom.
Global Instance: FinMapDom N Nmap Nset := mapset_dom_spec.
(** This file provides various tweaks and extensions to Coq's theory of numbers
(natural numbers [nat] and [N], positive numbers [positive], integers [Z], and
rationals [Qc]). In addition, this file defines a new type of positive rational
numbers [Qp], which is used extensively in Iris to represent fractional
permissions.
The organization of this file follows mostly Coq's standard library.
- We put all results in modules. For example, the module [Nat] collects the
results for type [nat]. Since the Coq stdlib already defines a module [Nat],
our module [Nat] exports Coq's module so that our module [Nat] contains the
union of the results from the Coq stdlib and std++.
- We follow the naming convention of Coq's "numbers" library to prefer
[succ]/[add]/[sub]/[mul] over [S]/[plus]/[minus]/[mult].
- One typically does not [Import] modules such as [Nat], and refers to the
results using [Nat.lem]. As a consequence, all [Hint]s [Instance]s in the modules in
this file are [Global] and not [Export]. Other things like [Arguments] are outside
the modules, since for them [Global] works like [Export].
The results for [Qc] are not yet in a module. This is in part because they
still follow the old/non-module style in Coq's standard library. See also
https://gitlab.mpi-sws.org/iris/stdpp/-/issues/147. *)
From Coq Require Export EqdepFacts PArith NArith ZArith.
From Coq Require Import QArith Qcanon.
From stdpp Require Export base decidable option.
From stdpp Require Import well_founded.
From stdpp Require Import options.
Local Open Scope nat_scope.
Global Instance comparison_eq_dec : EqDecision comparison.
Proof. solve_decision. Defined.
(** * Notations and properties of [nat] *)
Global Arguments Nat.sub !_ !_ / : assert.
Global Arguments Nat.max : simpl nomatch.
(** We do not make [Nat.lt] since it is an alias for [lt], which contains the
actual definition that we want to make opaque. *)
Global Typeclasses Opaque lt.
Reserved Notation "x ≤ y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y < z" (at level 70, y at next level).
Reserved Notation "x < y < z" (at level 70, y at next level).
Reserved Notation "x < y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y ≤ z ≤ z'"
(at level 70, y at next level, z at next level).
Infix "≤" := le : nat_scope.
(** We do *not* add notation for [≥] mapping to [ge], and we do also not use the
[>] notation from the Coq standard library. Using such notations leads to
annoying problems: if you have [x < y] in the context and need [y > x] for some
lemma, [assumption] won't work because [x < y] and [y > x] are not
definitionally equal. It is just generally frustrating to deal with this
mismatch, and much preferable to state logically equivalent things in syntactically
equal ways.
As an alternative, we could define [>] and [≥] as [parsing only] notation that
maps to [<] and [≤], respectively (similar to math-comp). This would change the
notation for [<] from the Coq standard library to something that is not
definitionally equal, so we avoid that as well.
This concern applies to all number types: [nat], [N], [Z], [positive], [Qc] and
[Qp]. *)
Notation "x ≤ y ≤ z" := (x y y z)%nat : nat_scope.
Notation "x ≤ y < z" := (x y y < z)%nat : nat_scope.
Notation "x < y ≤ z" := (x < y y z)%nat : nat_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x y y z z z')%nat : nat_scope.
Notation "(≤)" := le (only parsing) : nat_scope.
Notation "(<)" := lt (only parsing) : nat_scope.
Infix "`div`" := Nat.div (at level 35) : nat_scope.
Infix "`mod`" := Nat.modulo (at level 35) : nat_scope.
Infix "`max`" := Nat.max (at level 35) : nat_scope.
Infix "`min`" := Nat.min (at level 35) : nat_scope.
(** TODO: Consider removing these notations to avoid populting the global
scope? *)
Notation lcm := Nat.lcm.
Notation divide := Nat.divide.
Notation "( x | y )" := (divide x y) : nat_scope.
Module Nat.
Export PeanoNat.Nat.
Global Instance add_assoc' : Assoc (=) Nat.add := Nat.add_assoc.
Global Instance add_comm' : Comm (=) Nat.add := Nat.add_comm.
Global Instance add_left_id : LeftId (=) 0 Nat.add := Nat.add_0_l.
Global Instance add_right_id : RightId (=) 0 Nat.add := Nat.add_0_r.
Global Instance sub_right_id : RightId (=) 0 Nat.sub := Nat.sub_0_r.
Global Instance mul_assoc' : Assoc (=) Nat.mul := Nat.mul_assoc.
Global Instance mul_comm' : Comm (=) Nat.mul := Nat.mul_comm.
Global Instance mul_left_id : LeftId (=) 1 Nat.mul := Nat.mul_1_l.
Global Instance mul_right_id : RightId (=) 1 Nat.mul := Nat.mul_1_r.
Global Instance mul_left_absorb : LeftAbsorb (=) 0 Nat.mul := Nat.mul_0_l.
Global Instance mul_right_absorb : RightAbsorb (=) 0 Nat.mul := Nat.mul_0_r.
Global Instance div_right_id : RightId (=) 1 Nat.div := Nat.div_1_r.
Global Instance eq_dec: EqDecision nat := eq_nat_dec.
Global Instance le_dec: RelDecision le := le_dec.
Global Instance lt_dec: RelDecision lt := lt_dec.
Global Instance inhabited: Inhabited nat := populate 0.
Global Instance succ_inj: Inj (=) (=) Nat.succ.
Proof. by injection 1. Qed.
Global Instance le_po: PartialOrder ().
Proof. repeat split; repeat intro; auto with lia. Qed.
Global Instance le_total: Total ().
Proof. repeat intro; lia. Qed.
Global Instance le_pi: x y : nat, ProofIrrel (x y).
Proof.
assert ( x y (p : x y) y' (q : x y'),
y = y' eq_dep nat (le x) y p y' q) as aux.
{ fix FIX 3. intros x ? [|y p] ? [|y' q].
- done.
- clear FIX. intros; exfalso; auto with lia.
- clear FIX. intros; exfalso; auto with lia.
- injection 1. intros Hy. by case (FIX x y p y' q Hy). }
intros x y p q.
by apply (Eqdep_dec.eq_dep_eq_dec (λ x y, decide (x = y))), aux.
Qed.
Global Instance lt_pi: x y : nat, ProofIrrel (x < y).
Proof. unfold Peano.lt. apply _. Qed.
(** Given a measure/size [f : B → nat], you can do induction on the size of
[b : B] using [induction (lt_wf_0_projected f b)]. *)
Lemma lt_wf_0_projected {B} (f : B nat) : well_founded (λ x y, f x < f y).
Proof. by apply (wf_projected (<) f), lt_wf_0. Qed.
Lemma le_sum (x y : nat) : x y z, y = x + z.
Proof. split; [exists (y - x); lia | intros [z ->]; lia]. Qed.
(** This is similar to but slightly different than Coq's
[add_sub : ∀ n m : nat, n + m - m = n]. *)
Lemma add_sub' n m : n + m - n = m.
Proof. lia. Qed.
Lemma le_add_sub n m : n m m = n + (m - n).
Proof. lia. Qed.
(** Cancellation for multiplication. Coq's stdlib has these lemmas for [Z],
but those for [nat] are missing. We use the naming scheme of Coq's stdlib. *)
Lemma mul_reg_l n m p : p 0 p * n = p * m n = m.
Proof.
pose proof (Z.mul_reg_l (Z.of_nat n) (Z.of_nat m) (Z.of_nat p)). lia.
Qed.
Lemma mul_reg_r n m p : p 0 n * p = m * p n = m.
Proof. rewrite <-!(Nat.mul_comm p). apply mul_reg_l. Qed.
Lemma lt_succ_succ n : n < S (S n).
Proof. auto with arith. Qed.
Lemma mul_split_l n x1 x2 y1 y2 :
x2 < n y2 < n x1 * n + x2 = y1 * n + y2 x1 = y1 x2 = y2.
Proof.
intros Hx2 Hy2 E. cut (x1 = y1); [intros; subst;lia |].
revert y1 E. induction x1; simpl; intros [|?]; simpl; auto with lia.
Qed.
Lemma mul_split_r n x1 x2 y1 y2 :
x1 < n y1 < n x1 + x2 * n = y1 + y2 * n x1 = y1 x2 = y2.
Proof. intros. destruct (mul_split_l n x2 x1 y2 y1); auto with lia. Qed.
Global Instance divide_dec : RelDecision Nat.divide.
Proof.
refine (λ x y, cast_if (decide (lcm x y = y)));
abstract (by rewrite Nat.divide_lcm_iff).
Defined.
Global Instance divide_po : PartialOrder divide.
Proof.
repeat split; try apply _. intros ??. apply Nat.divide_antisym; lia.
Qed.
Global Hint Extern 0 (_ | _) => reflexivity : core.
Lemma divide_ne_0 x y : (x | y) y 0 x 0.
Proof. intros Hxy Hy ->. by apply Hy, Nat.divide_0_l. Qed.
Lemma iter_succ {A} n (f: A A) x : Nat.iter (S n) f x = f (Nat.iter n f x).
Proof. done. Qed.
Lemma iter_succ_r {A} n (f: A A) x : Nat.iter (S n) f x = Nat.iter n f (f x).
Proof. induction n; by f_equal/=. Qed.
Lemma iter_add {A} n1 n2 (f : A A) x :
Nat.iter (n1 + n2) f x = Nat.iter n1 f (Nat.iter n2 f x).
Proof. induction n1; by f_equal/=. Qed.
Lemma iter_mul {A} n1 n2 (f : A A) x :
Nat.iter (n1 * n2) f x = Nat.iter n1 (Nat.iter n2 f) x.
Proof.
intros. induction n1 as [|n1 IHn1]; [done|].
simpl. by rewrite iter_add, IHn1.
Qed.
Lemma iter_ind {A} (P : A Prop) f x k :
P x ( y, P y P (f y)) P (Nat.iter k f x).
Proof. induction k; simpl; auto. Qed.
(** FIXME: Coq 8.17 deprecated some lemmas in https://github.com/coq/coq/pull/16203.
We cannot use the intended replacements since we support Coq 8.16. We also do
not want to disable [deprecated-syntactic-definition] everywhere, so instead
we provide non-deprecated duplicates of those deprecated lemmas that we need
in std++ and Iris. *)
Local Set Warnings "-deprecated-syntactic-definition".
Lemma add_mod_idemp_l a b n : n 0 (a mod n + b) mod n = (a + b) mod n.
Proof. auto using add_mod_idemp_l. Qed.
Lemma div_lt_upper_bound a b q : b 0 a < b * q a / b < q.
Proof. auto using div_lt_upper_bound. Qed.
End Nat.
(** * Notations and properties of [positive] *)
Local Open Scope positive_scope.
Global Typeclasses Opaque Pos.le.
Global Typeclasses Opaque Pos.lt.
Infix "≤" := Pos.le : positive_scope.
Notation "x ≤ y ≤ z" := (x y y z) : positive_scope.
Notation "x ≤ y < z" := (x y y < z) : positive_scope.
Notation "x < y ≤ z" := (x < y y z) : positive_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x y y z z z') : positive_scope.
Notation "(≤)" := Pos.le (only parsing) : positive_scope.
Notation "(<)" := Pos.lt (only parsing) : positive_scope.
Notation "(~0)" := xO (only parsing) : positive_scope.
Notation "(~1)" := xI (only parsing) : positive_scope.
Infix "`max`" := Pos.max : positive_scope.
Infix "`min`" := Pos.min : positive_scope.
Global Arguments Pos.pred : simpl never.
Global Arguments Pos.succ : simpl never.
Global Arguments Pos.of_nat : simpl never.
Global Arguments Pos.to_nat : simpl never.
Global Arguments Pos.mul : simpl never.
Global Arguments Pos.add : simpl never.
Global Arguments Pos.sub : simpl never.
Global Arguments Pos.pow : simpl never.
Global Arguments Pos.shiftl : simpl never.
Global Arguments Pos.shiftr : simpl never.
Global Arguments Pos.gcd : simpl never.
Global Arguments Pos.min : simpl never.
Global Arguments Pos.max : simpl never.
Global Arguments Pos.lor : simpl never.
Global Arguments Pos.land : simpl never.
Global Arguments Pos.lxor : simpl never.
Global Arguments Pos.square : simpl never.
Module Pos.
Export BinPos.Pos.
Global Instance add_assoc' : Assoc (=) Pos.add := Pos.add_assoc.
Global Instance add_comm' : Comm (=) Pos.add := Pos.add_comm.
Global Instance mul_assoc' : Assoc (=) Pos.mul := Pos.mul_assoc.
Global Instance mul_comm' : Comm (=) Pos.mul := Pos.mul_comm.
Global Instance mul_left_id : LeftId (=) 1 Pos.mul := Pos.mul_1_l.
Global Instance mul_right_id : RightId (=) 1 Pos.mul := Pos.mul_1_r.
Global Instance eq_dec: EqDecision positive := Pos.eq_dec.
Global Instance le_dec: RelDecision Pos.le.
Proof. refine (λ x y, decide ((x ?= y) Gt)). Defined.
Global Instance lt_dec: RelDecision Pos.lt.
Proof. refine (λ x y, decide ((x ?= y) = Lt)). Defined.
Global Instance le_total: Total Pos.le.
Proof. repeat intro; lia. Qed.
Global Instance inhabited: Inhabited positive := populate 1.
Global Instance maybe_xO : Maybe xO := λ p, match p with p~0 => Some p | _ => None end.
Global Instance maybe_xI : Maybe xI := λ p, match p with p~1 => Some p | _ => None end.
Global Instance xO_inj : Inj (=) (=) (~0).
Proof. by injection 1. Qed.
Global Instance xI_inj : Inj (=) (=) (~1).
Proof. by injection 1. Qed.
(** Since [positive] represents lists of bits, we define list operations
on it. These operations are in reverse, as positives are treated as snoc
lists instead of cons lists. *)
Fixpoint app (p1 p2 : positive) : positive :=
match p2 with
| 1 => p1
| p2~0 => (app p1 p2)~0
| p2~1 => (app p1 p2)~1
end.
Module Import app_notations.
Infix "++" := app : positive_scope.
Notation "(++)" := app (only parsing) : positive_scope.
Notation "( p ++.)" := (app p) (only parsing) : positive_scope.
Notation "(.++ q )" := (λ p, app p q) (only parsing) : positive_scope.
End app_notations.
Fixpoint reverse_go (p1 p2 : positive) : positive :=
match p2 with
| 1 => p1
| p2~0 => reverse_go (p1~0) p2
| p2~1 => reverse_go (p1~1) p2
end.
Definition reverse : positive positive := reverse_go 1.
Global Instance app_1_l : LeftId (=) 1 (++).
Proof. intros p. by induction p; intros; f_equal/=. Qed.
Global Instance app_1_r : RightId (=) 1 (++).
Proof. done. Qed.
Global Instance app_assoc : Assoc (=) (++).
Proof. intros ?? p. by induction p; intros; f_equal/=. Qed.
Global Instance app_inj p : Inj (=) (=) (.++ p).
Proof. intros ???. induction p; simplify_eq; auto. Qed.
Lemma reverse_go_app p1 p2 p3 :
reverse_go p1 (p2 ++ p3) = reverse_go p1 p3 ++ reverse_go 1 p2.
Proof.
revert p3 p1 p2.
cut ( p1 p2 p3, reverse_go (p2 ++ p3) p1 = p2 ++ reverse_go p3 p1).
{ by intros go p3; induction p3; intros p1 p2; simpl; auto; rewrite <-?go. }
intros p1; induction p1 as [p1 IH|p1 IH|]; intros p2 p3; simpl; auto.
- apply (IH _ (_~1)).
- apply (IH _ (_~0)).
Qed.
Lemma reverse_app p1 p2 : reverse (p1 ++ p2) = reverse p2 ++ reverse p1.
Proof. unfold reverse. by rewrite reverse_go_app. Qed.
Lemma reverse_xO p : reverse (p~0) = (1~0) ++ reverse p.
Proof. apply (reverse_app p (1~0)). Qed.
Lemma reverse_xI p : reverse (p~1) = (1~1) ++ reverse p.
Proof. apply (reverse_app p (1~1)). Qed.
Lemma reverse_involutive p : reverse (reverse p) = p.
Proof.
induction p as [p IH|p IH|]; simpl.
- by rewrite reverse_xI, reverse_app, IH.
- by rewrite reverse_xO, reverse_app, IH.
- reflexivity.
Qed.
Global Instance reverse_inj : Inj (=) (=) reverse.
Proof.
intros p q eq.
rewrite <-(reverse_involutive p).
rewrite <-(reverse_involutive q).
by rewrite eq.
Qed.
Fixpoint length (p : positive) : nat :=
match p with 1 => 0%nat | p~0 | p~1 => S (length p) end.
Lemma length_app p1 p2 : length (p1 ++ p2) = (length p2 + length p1)%nat.
Proof. by induction p2; f_equal/=. Qed.
Lemma lt_sum (x y : positive) : x < y z, y = x + z.
Proof.
split.
- exists (y - x)%positive. symmetry. apply Pplus_minus. lia.
- intros [z ->]. lia.
Qed.
(** Duplicate the bits of a positive, i.e. 1~0~1 -> 1~0~0~1~1 and
1~1~0~0 -> 1~1~1~0~0~0~0 *)
Fixpoint dup (p : positive) : positive :=
match p with
| 1 => 1
| p'~0 => (dup p')~0~0
| p'~1 => (dup p')~1~1
end.
Lemma dup_app p q :
dup (p ++ q) = dup p ++ dup q.
Proof.
revert p.
induction q as [p IH|p IH|]; intros q; simpl.
- by rewrite IH.
- by rewrite IH.
- reflexivity.
Qed.
Lemma dup_suffix_eq p q s1 s2 :
s1~1~0 ++ dup p = s2~1~0 ++ dup q p = q.
Proof.
revert q.
induction p as [p IH|p IH|]; intros [q|q|] eq; simplify_eq/=.
- by rewrite (IH q).
- by rewrite (IH q).
- reflexivity.
Qed.
Global Instance dup_inj : Inj (=) (=) dup.
Proof.
intros p q eq.
apply (dup_suffix_eq _ _ 1 1).
by rewrite eq.
Qed.
Lemma reverse_dup p :
reverse (dup p) = dup (reverse p).
Proof.
induction p as [p IH|p IH|]; simpl.
- rewrite 3!reverse_xI.
rewrite (assoc_L (++)).
rewrite IH.
rewrite dup_app.
reflexivity.
- rewrite 3!reverse_xO.
rewrite (assoc_L (++)).
rewrite IH.
rewrite dup_app.
reflexivity.
- reflexivity.
Qed.
End Pos.
Export Pos.app_notations.
Local Close Scope positive_scope.
(** * Notations and properties of [N] *)
Local Open Scope N_scope.
Global Typeclasses Opaque N.le.
Global Typeclasses Opaque N.lt.
Infix "≤" := N.le : N_scope.
Notation "x ≤ y ≤ z" := (x y y z)%N : N_scope.
Notation "x ≤ y < z" := (x y y < z)%N : N_scope.
Notation "x < y ≤ z" := (x < y y z)%N : N_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x y y z z z')%N : N_scope.
Notation "(≤)" := N.le (only parsing) : N_scope.
Notation "(<)" := N.lt (only parsing) : N_scope.
Infix "`div`" := N.div (at level 35) : N_scope.
Infix "`mod`" := N.modulo (at level 35) : N_scope.
Infix "`max`" := N.max (at level 35) : N_scope.
Infix "`min`" := N.min (at level 35) : N_scope.
Global Arguments N.pred : simpl never.
Global Arguments N.succ : simpl never.
Global Arguments N.of_nat : simpl never.
Global Arguments N.to_nat : simpl never.
Global Arguments N.mul : simpl never.
Global Arguments N.add : simpl never.
Global Arguments N.sub : simpl never.
Global Arguments N.pow : simpl never.
Global Arguments N.div : simpl never.
Global Arguments N.modulo : simpl never.
Global Arguments N.shiftl : simpl never.
Global Arguments N.shiftr : simpl never.
Global Arguments N.gcd : simpl never.
Global Arguments N.lcm : simpl never.
Global Arguments N.min : simpl never.
Global Arguments N.max : simpl never.
Global Arguments N.lor : simpl never.
Global Arguments N.land : simpl never.
Global Arguments N.lxor : simpl never.
Global Arguments N.lnot : simpl never.
Global Arguments N.square : simpl never.
Global Hint Extern 0 (_ _)%N => reflexivity : core.
Module N.
Export BinNat.N.
Global Instance add_assoc' : Assoc (=) N.add := N.add_assoc.
Global Instance add_comm' : Comm (=) N.add := N.add_comm.
Global Instance add_left_id : LeftId (=) 0 N.add := N.add_0_l.
Global Instance add_right_id : RightId (=) 0 N.add := N.add_0_r.
Global Instance sub_right_id : RightId (=) 0 N.sub := N.sub_0_r.
Global Instance mul_assoc' : Assoc (=) N.mul := N.mul_assoc.
Global Instance mul_comm' : Comm (=) N.mul := N.mul_comm.
Global Instance mul_left_id : LeftId (=) 1 N.mul := N.mul_1_l.
Global Instance mul_right_id : RightId (=) 1 N.mul := N.mul_1_r.
Global Instance mul_left_absorb : LeftAbsorb (=) 0 N.mul := N.mul_0_l.
Global Instance mul_right_absorb : RightAbsorb (=) 0 N.mul := N.mul_0_r.
Global Instance div_right_id : RightId (=) 1 N.div := N.div_1_r.
Global Instance pos_inj : Inj (=) (=) N.pos.
Proof. by injection 1. Qed.
Global Instance eq_dec : EqDecision N := N.eq_dec.
Global Program Instance le_dec : RelDecision N.le := λ x y,
match N.compare x y with Gt => right _ | _ => left _ end.
Solve Obligations with naive_solver.
Global Program Instance lt_dec : RelDecision N.lt := λ x y,
match N.compare x y with Lt => left _ | _ => right _ end.
Solve Obligations with naive_solver.
Global Instance inhabited : Inhabited N := populate 1%N.
Global Instance lt_pi x y : ProofIrrel (x < y)%N.
Proof. unfold N.lt. apply _. Qed.
Global Instance le_po : PartialOrder ()%N.
Proof.
repeat split; red; [apply N.le_refl | apply N.le_trans | apply N.le_antisymm].
Qed.
Global Instance le_total : Total ()%N.
Proof. repeat intro; lia. Qed.
Lemma lt_wf_0_projected {B} (f : B N) : well_founded (λ x y, f x < f y).
Proof. by apply (wf_projected (<) f), lt_wf_0. Qed.
(** FIXME: Coq 8.17 deprecated some lemmas in https://github.com/coq/coq/pull/16203.
We cannot use the intended replacements since we support Coq 8.16. We also do
not want to disable [deprecated-syntactic-definition] everywhere, so instead
we provide non-deprecated duplicates of those deprecated lemmas that we need
in std++ and Iris. *)
Local Set Warnings "-deprecated-syntactic-definition".
Lemma add_mod_idemp_l a b n : n 0 (a mod n + b) mod n = (a + b) mod n.
Proof. auto using add_mod_idemp_l. Qed.
Lemma div_lt_upper_bound a b q : b 0 a < b * q a / b < q.
Proof. auto using div_lt_upper_bound. Qed.
End N.
Local Close Scope N_scope.
(** * Notations and properties of [Z] *)
Local Open Scope Z_scope.
Global Typeclasses Opaque Z.le.
Global Typeclasses Opaque Z.lt.
Infix "≤" := Z.le : Z_scope.
Notation "x ≤ y ≤ z" := (x y y z) : Z_scope.
Notation "x ≤ y < z" := (x y y < z) : Z_scope.
Notation "x < y < z" := (x < y y < z) : Z_scope.
Notation "x < y ≤ z" := (x < y y z) : Z_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x y y z z z') : Z_scope.
Notation "(≤)" := Z.le (only parsing) : Z_scope.
Notation "(<)" := Z.lt (only parsing) : Z_scope.
Infix "`div`" := Z.div (at level 35) : Z_scope.
Infix "`mod`" := Z.modulo (at level 35) : Z_scope.
Infix "`quot`" := Z.quot (at level 35) : Z_scope.
Infix "`rem`" := Z.rem (at level 35) : Z_scope.
Infix "≪" := Z.shiftl (at level 35) : Z_scope.
Infix "≫" := Z.shiftr (at level 35) : Z_scope.
Infix "`max`" := Z.max (at level 35) : Z_scope.
Infix "`min`" := Z.min (at level 35) : Z_scope.
Global Arguments Z.pred : simpl never.
Global Arguments Z.succ : simpl never.
Global Arguments Z.of_nat : simpl never.
Global Arguments Z.to_nat : simpl never.
Global Arguments Z.mul : simpl never.
Global Arguments Z.add : simpl never.
Global Arguments Z.sub : simpl never.
Global Arguments Z.opp : simpl never.
Global Arguments Z.pow : simpl never.
Global Arguments Z.div : simpl never.
Global Arguments Z.modulo : simpl never.
Global Arguments Z.quot : simpl never.
Global Arguments Z.rem : simpl never.
Global Arguments Z.shiftl : simpl never.
Global Arguments Z.shiftr : simpl never.
Global Arguments Z.gcd : simpl never.
Global Arguments Z.lcm : simpl never.
Global Arguments Z.min : simpl never.
Global Arguments Z.max : simpl never.
Global Arguments Z.lor : simpl never.
Global Arguments Z.land : simpl never.
Global Arguments Z.lxor : simpl never.
Global Arguments Z.lnot : simpl never.
Global Arguments Z.square : simpl never.
Global Arguments Z.abs : simpl never.
Module Z.
Export BinInt.Z.
Global Instance add_assoc' : Assoc (=) Z.add := Z.add_assoc.
Global Instance add_comm' : Comm (=) Z.add := Z.add_comm.
Global Instance add_left_id : LeftId (=) 0 Z.add := Z.add_0_l.
Global Instance add_right_id : RightId (=) 0 Z.add := Z.add_0_r.
Global Instance sub_right_id : RightId (=) 0 Z.sub := Z.sub_0_r.
Global Instance mul_assoc' : Assoc (=) Z.mul := Z.mul_assoc.
Global Instance mul_comm' : Comm (=) Z.mul := Z.mul_comm.
Global Instance mul_left_id : LeftId (=) 1 Z.mul := Z.mul_1_l.
Global Instance mul_right_id : RightId (=) 1 Z.mul := Z.mul_1_r.
Global Instance mul_left_absorb : LeftAbsorb (=) 0 Z.mul := Z.mul_0_l.
Global Instance mul_right_absorb : RightAbsorb (=) 0 Z.mul := Z.mul_0_r.
Global Instance div_right_id : RightId (=) 1 Z.div := Z.div_1_r.
Global Instance pos_inj : Inj (=) (=) Z.pos.
Proof. by injection 1. Qed.
Global Instance neg_inj : Inj (=) (=) Z.neg.
Proof. by injection 1. Qed.
Global Instance eq_dec: EqDecision Z := Z.eq_dec.
Global Instance le_dec: RelDecision Z.le := Z_le_dec.
Global Instance lt_dec: RelDecision Z.lt := Z_lt_dec.
Global Instance ge_dec: RelDecision Z.ge := Z_ge_dec.
Global Instance gt_dec: RelDecision Z.gt := Z_gt_dec.
Global Instance inhabited: Inhabited Z := populate 1.
Global Instance lt_pi x y : ProofIrrel (x < y).
Proof. unfold Z.lt. apply _. Qed.
Global Instance le_po : PartialOrder ().
Proof.
repeat split; red; [apply Z.le_refl | apply Z.le_trans | apply Z.le_antisymm].
Qed.
Global Instance le_total: Total Z.le.
Proof. repeat intro; lia. Qed.
Lemma lt_wf_projected {B} (f : B Z) z : well_founded (λ x y, z f x < f y).
Proof. by apply (wf_projected (λ x y, z x < y) f), lt_wf. Qed.
Lemma pow_pred_r n m : 0 < m n * n ^ (Z.pred m) = n ^ m.
Proof.
intros. rewrite <-Z.pow_succ_r, Z.succ_pred; [done|]. by apply Z.lt_le_pred.
Qed.
Lemma quot_range_nonneg k x y : 0 x < k 0 < y 0 x `quot` y < k.
Proof.
intros [??] ?.
destruct (decide (y = 1)); subst; [rewrite Z.quot_1_r; auto |].
destruct (decide (x = 0)); subst; [rewrite Z.quot_0_l; auto with lia |].
split; [apply Z.quot_pos; lia|].
trans x; auto. apply Z.quot_lt; lia.
Qed.
Lemma mod_pos x y : 0 < y 0 x `mod` y.
Proof. apply Z.mod_pos_bound. Qed.
Global Hint Resolve Z.lt_le_incl : zpos.
Global Hint Resolve Z.add_nonneg_pos Z.add_pos_nonneg Z.add_nonneg_nonneg : zpos.
Global Hint Resolve Z.mul_nonneg_nonneg Z.mul_pos_pos : zpos.
Global Hint Resolve Z.pow_pos_nonneg Z.pow_nonneg: zpos.
Global Hint Resolve Z.mod_pos Z.div_pos : zpos.
Global Hint Extern 1000 => lia : zpos.
Lemma succ_pred_induction y (P : Z Prop) :
P y
( x, y x P x P (Z.succ x))
( x, x y P x P (Z.pred x))
( x, P x).
Proof. intros H0 HS HP. by apply (Z.order_induction' _ _ y). Qed.
Lemma mod_in_range q a c :
q * c a < (q + 1) * c
a `mod` c = a - q * c.
Proof. intros ?. symmetry. apply Z.mod_unique_pos with q; lia. Qed.
Lemma ones_spec n m:
0 m 0 n
Z.testbit (Z.ones n) m = bool_decide (m < n).
Proof.
intros. case_bool_decide.
- by rewrite Z.ones_spec_low by lia.
- by rewrite Z.ones_spec_high by lia.
Qed.
Lemma bounded_iff_bits_nonneg k n :
0 k 0 n
n < 2^k l, k l Z.testbit n l = false.
Proof.
intros. destruct (decide (n = 0)) as [->|].
{ naive_solver eauto using Z.bits_0, Z.pow_pos_nonneg with lia. }
split.
{ intros Hb%Z.log2_lt_pow2 l Hl; [|lia]. apply Z.bits_above_log2; lia. }
intros Hl. apply Z.nle_gt; intros ?.
assert (Z.testbit n (Z.log2 n) = false) as Hbit.
{ apply Hl, Z.log2_le_pow2; lia. }
by rewrite Z.bit_log2 in Hbit by lia.
Qed.
(* Goals of the form [0 ≤ n ≤ 2^k] appear often. So we also define the
derived version [Z_bounded_iff_bits_nonneg'] that does not require
proving [0 ≤ n] twice in that case. *)
Lemma bounded_iff_bits_nonneg' k n :
0 k 0 n
0 n < 2^k l, k l Z.testbit n l = false.
Proof. intros ??. rewrite <-bounded_iff_bits_nonneg; lia. Qed.
Lemma bounded_iff_bits k n :
0 k
-2^k n < 2^k l, k l Z.testbit n l = bool_decide (n < 0).
Proof.
intros Hk.
case_bool_decide; [ | rewrite <-bounded_iff_bits_nonneg; lia].
assert(n = - Z.abs n)%Z as -> by lia.
split.
{ intros [? _] l Hl.
rewrite Z.bits_opp, negb_true_iff by lia.
apply bounded_iff_bits_nonneg with k; lia. }
intros Hbit. split.
- rewrite <-Z.opp_le_mono, <-Z.lt_pred_le.
apply bounded_iff_bits_nonneg; [lia..|]. intros l Hl.
rewrite <-negb_true_iff, <-Z.bits_opp by lia.
by apply Hbit.
- etrans; [|apply Z.pow_pos_nonneg]; lia.
Qed.
Lemma add_nocarry_lor a b :
Z.land a b = 0
a + b = Z.lor a b.
Proof. intros ?. rewrite <-Z.lxor_lor by done. by rewrite Z.add_nocarry_lxor. Qed.
Lemma opp_lnot a : -a - 1 = Z.lnot a.
Proof. pose proof (Z.add_lnot_diag a). lia. Qed.
End Z.
Module Nat2Z.
Export Znat.Nat2Z.
Global Instance inj' : Inj (=) (=) Z.of_nat.
Proof. intros n1 n2. apply Nat2Z.inj. Qed.
Lemma divide n m : (Z.of_nat n | Z.of_nat m) (n | m)%nat.
Proof.
split.
- rewrite <-(Nat2Z.id m) at 2; intros [i ->]; exists (Z.to_nat i). lia.
- intros [i ->]. exists (Z.of_nat i). by rewrite Nat2Z.inj_mul.
Qed.
Lemma inj_div x y : Z.of_nat (x `div` y) = (Z.of_nat x) `div` (Z.of_nat y).
Proof.
destruct (decide (y = 0%nat)); [by subst; destruct x |].
apply Z.div_unique with (Z.of_nat $ x `mod` y)%nat.
{ left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
apply Nat.mod_bound_pos; lia. }
by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Lemma inj_mod x y : Z.of_nat (x `mod` y) = (Z.of_nat x) `mod` (Z.of_nat y).
Proof.
destruct (decide (y = 0%nat)); [by subst; destruct x |].
apply Z.mod_unique with (Z.of_nat $ x `div` y)%nat.
{ left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
apply Nat.mod_bound_pos; lia. }
by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
End Nat2Z.
Module Z2Nat.
Export Znat.Z2Nat.
Lemma neq_0_pos x : Z.to_nat x 0%nat 0 < x.
Proof. by destruct x. Qed.
Lemma neq_0_nonneg x : Z.to_nat x 0%nat 0 x.
Proof. by destruct x. Qed.
Lemma nonpos x : x 0 Z.to_nat x = 0%nat.
Proof. destruct x; simpl; auto using Z2Nat.inj_neg. by intros []. Qed.
Lemma inj_pow (x y : nat) : Z.of_nat (x ^ y) = (Z.of_nat x) ^ (Z.of_nat y).
Proof.
induction y as [|y IH]; [by rewrite Z.pow_0_r, Nat.pow_0_r|].
by rewrite Nat.pow_succ_r, Nat2Z.inj_succ, Z.pow_succ_r,
Nat2Z.inj_mul, IH by auto with zpos.
Qed.
Lemma divide n m :
0 n 0 m (Z.to_nat n | Z.to_nat m)%nat (n | m).
Proof. intros. by rewrite <-Nat2Z.divide, !Z2Nat.id by done. Qed.
Lemma inj_div x y :
0 x 0 y
Z.to_nat (x `div` y) = (Z.to_nat x `div` Z.to_nat y)%nat.
Proof.
intros. destruct (decide (y = Z.of_nat 0%nat)); [by subst; destruct x|].
pose proof (Z.div_pos x y).
apply (base.inj Z.of_nat). by rewrite Nat2Z.inj_div, !Z2Nat.id by lia.
Qed.
Lemma inj_mod x y :
0 x 0 y
Z.to_nat (x `mod` y) = (Z.to_nat x `mod` Z.to_nat y)%nat.
Proof.
intros. destruct (decide (y = Z.of_nat 0%nat)); [by subst; destruct x|].
pose proof (Z.mod_pos x y).
apply (base.inj Z.of_nat). by rewrite Nat2Z.inj_mod, !Z2Nat.id by lia.
Qed.
End Z2Nat.
(** ** [bool_to_Z] *)
Definition bool_to_Z (b : bool) : Z :=
if b then 1 else 0.
Lemma bool_to_Z_bound b : 0 bool_to_Z b < 2.
Proof. destruct b; simpl; lia. Qed.
Lemma bool_to_Z_eq_0 b : bool_to_Z b = 0 b = false.
Proof. destruct b; naive_solver. Qed.
Lemma bool_to_Z_neq_0 b : bool_to_Z b 0 b = true.
Proof. destruct b; naive_solver. Qed.
Lemma bool_to_Z_spec b n : Z.testbit (bool_to_Z b) n = bool_decide (n = 0) && b.
Proof. by destruct b, n. Qed.
Local Close Scope Z_scope.
(** * Injectivity of casts *)
Module Nat2N.
Export Nnat.Nat2N.
Global Instance inj' : Inj (=) (=) N.of_nat := Nat2N.inj.
End Nat2N.
Module N2Nat.
Export Nnat.N2Nat.
Global Instance inj' : Inj (=) (=) N.to_nat := N2Nat.inj.
End N2Nat.
Module Pos2Nat.
Export Pnat.Pos2Nat.
Global Instance inj' : Inj (=) (=) Pos.to_nat := Pos2Nat.inj.
End Pos2Nat.
Module SuccNat2Pos.
Export Pnat.SuccNat2Pos.
Global Instance inj' : Inj (=) (=) Pos.of_succ_nat := SuccNat2Pos.inj.
End SuccNat2Pos.
Module N2Z.
Export Znat.N2Z.
Global Instance inj' : Inj (=) (=) Z.of_N := N2Z.inj.
End N2Z.
(* Add others here. *)
(** * Notations and properties of [Qc] *)
Global Typeclasses Opaque Qcle.
Global Typeclasses Opaque Qclt.
Local Open Scope Qc_scope.
Delimit Scope Qc_scope with Qc.
Notation "1" := (Q2Qc 1) : Qc_scope.
Notation "2" := (1+1) : Qc_scope.
Notation "- 1" := (Qcopp 1) : Qc_scope.
Notation "- 2" := (Qcopp 2) : Qc_scope.
Infix "≤" := Qcle : Qc_scope.
Notation "x ≤ y ≤ z" := (x y y z) : Qc_scope.
Notation "x ≤ y < z" := (x y y < z) : Qc_scope.
Notation "x < y < z" := (x < y y < z) : Qc_scope.
Notation "x < y ≤ z" := (x < y y z) : Qc_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x y y z z z') : Qc_scope.
Notation "(≤)" := Qcle (only parsing) : Qc_scope.
Notation "(<)" := Qclt (only parsing) : Qc_scope.
Global Hint Extern 1 (_ _) => reflexivity || discriminate : core.
Global Arguments Qred : simpl never.
Global Instance Qcplus_assoc' : Assoc (=) Qcplus := Qcplus_assoc.
Global Instance Qcplus_comm' : Comm (=) Qcplus := Qcplus_comm.
Global Instance Qcplus_left_id : LeftId (=) 0 Qcplus := Qcplus_0_l.
Global Instance Qcplus_right_id : RightId (=) 0 Qcplus := Qcplus_0_r.
Global Instance Qcminus_right_id : RightId (=) 0 Qcminus.
Proof. unfold RightId. intros. ring. Qed.
Global Instance Qcmult_assoc' : Assoc (=) Qcmult := Qcmult_assoc.
Global Instance Qcmult_comm' : Comm (=) Qcmult := Qcmult_comm.
Global Instance Qcmult_left_id : LeftId (=) 1 Qcmult := Qcmult_1_l.
Global Instance Qcmult_right_id : RightId (=) 1 Qcmult := Qcmult_1_r.
Global Instance Qcmult_left_absorb : LeftAbsorb (=) 0 Qcmult := Qcmult_0_l.
Global Instance Qcmult_right_absorb : RightAbsorb (=) 0 Qcmult := Qcmult_0_r.
Global Instance Qcdiv_right_id : RightId (=) 1 Qcdiv.
Proof. intros x. rewrite <-(Qcmult_1_l (x / 1)), Qcmult_div_r; done. Qed.
Lemma inject_Z_Qred n : Qred (inject_Z n) = inject_Z n.
Proof. apply Qred_identity; auto using Z.gcd_1_r. Qed.
Definition Qc_of_Z (n : Z) : Qc := Qcmake _ (inject_Z_Qred n).
Global Instance Qc_eq_dec: EqDecision Qc := Qc_eq_dec.
Global Program Instance Qc_le_dec: RelDecision Qcle := λ x y,
if Qclt_le_dec y x then right _ else left _.
Next Obligation. intros x y; apply Qclt_not_le. Qed.
Next Obligation. done. Qed.
Global Program Instance Qc_lt_dec: RelDecision Qclt := λ x y,
if Qclt_le_dec x y then left _ else right _.
Next Obligation. done. Qed.
Next Obligation. intros x y; apply Qcle_not_lt. Qed.
Global Instance Qc_lt_pi x y : ProofIrrel (x < y).
Proof. unfold Qclt. apply _. Qed.
Global Instance Qc_le_po: PartialOrder ().
Proof.
repeat split; red; [apply Qcle_refl | apply Qcle_trans | apply Qcle_antisym].
Qed.
Global Instance Qc_lt_strict: StrictOrder (<).
Proof.
split; red; [|apply Qclt_trans].
intros x Hx. by destruct (Qclt_not_eq x x).
Qed.
Global Instance Qc_le_total: Total Qcle.
Proof. intros x y. destruct (Qclt_le_dec x y); auto using Qclt_le_weak. Qed.
Lemma Qcplus_diag x : (x + x)%Qc = (2 * x)%Qc.
Proof. ring. Qed.
Lemma Qcle_ngt (x y : Qc) : x y ¬y < x.
Proof. split; auto using Qcle_not_lt, Qcnot_lt_le. Qed.
Lemma Qclt_nge (x y : Qc) : x < y ¬y x.
Proof. split; auto using Qclt_not_le, Qcnot_le_lt. Qed.
Lemma Qcplus_le_mono_l (x y z : Qc) : x y z + x z + y.
Proof.
split; intros.
- by apply Qcplus_le_compat.
- replace x with ((0 - z) + (z + x)) by ring.
replace y with ((0 - z) + (z + y)) by ring.
by apply Qcplus_le_compat.
Qed.
Lemma Qcplus_le_mono_r (x y z : Qc) : x y x + z y + z.
Proof. rewrite !(Qcplus_comm _ z). apply Qcplus_le_mono_l. Qed.
Lemma Qcplus_lt_mono_l (x y z : Qc) : x < y z + x < z + y.
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_l. Qed.
Lemma Qcplus_lt_mono_r (x y z : Qc) : x < y x + z < y + z.
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_r. Qed.
Global Instance Qcopp_inj : Inj (=) (=) Qcopp.
Proof.
intros x y H. by rewrite <-(Qcopp_involutive x), H, Qcopp_involutive.
Qed.
Global Instance Qcplus_inj_r z : Inj (=) (=) (Qcplus z).
Proof.
intros x y H. by apply (anti_symm ());rewrite (Qcplus_le_mono_l _ _ z), H.
Qed.
Global Instance Qcplus_inj_l z : Inj (=) (=) (λ x, x + z).
Proof.
intros x y H. by apply (anti_symm ()); rewrite (Qcplus_le_mono_r _ _ z), H.
Qed.
Lemma Qcplus_pos_nonneg (x y : Qc) : 0 < x 0 y 0 < x + y.
Proof.
intros. apply Qclt_le_trans with (x + 0); [by rewrite Qcplus_0_r|].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonneg_pos (x y : Qc) : 0 x 0 < y 0 < x + y.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_pos_nonneg. Qed.
Lemma Qcplus_pos_pos (x y : Qc) : 0 < x 0 < y 0 < x + y.
Proof. auto using Qcplus_pos_nonneg, Qclt_le_weak. Qed.
Lemma Qcplus_nonneg_nonneg (x y : Qc) : 0 x 0 y 0 x + y.
Proof.
intros. trans (x + 0); [by rewrite Qcplus_0_r|].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_neg_nonpos (x y : Qc) : x < 0 y 0 x + y < 0.
Proof.
intros. apply Qcle_lt_trans with (x + 0); [|by rewrite Qcplus_0_r].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonpos_neg (x y : Qc) : x 0 y < 0 x + y < 0.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_neg_nonpos. Qed.
Lemma Qcplus_neg_neg (x y : Qc) : x < 0 y < 0 x + y < 0.
Proof. auto using Qcplus_nonpos_neg, Qclt_le_weak. Qed.
Lemma Qcplus_nonpos_nonpos (x y : Qc) : x 0 y 0 x + y 0.
Proof.
intros. trans (x + 0); [|by rewrite Qcplus_0_r].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcmult_le_mono_nonneg_l x y z : 0 z x y z * x z * y.
Proof. intros. rewrite !(Qcmult_comm z). by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_nonneg_r x y z : 0 z x y x * z y * z.
Proof. intros. by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_pos_l x y z : 0 < z x y z * x z * y.
Proof.
split; auto using Qcmult_le_mono_nonneg_l, Qclt_le_weak.
rewrite !Qcle_ngt, !(Qcmult_comm z).
intuition auto using Qcmult_lt_compat_r.
Qed.
Lemma Qcmult_le_mono_pos_r x y z : 0 < z x y x * z y * z.
Proof. rewrite !(Qcmult_comm _ z). by apply Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_l x y z : 0 < z x < y z * x < z * y.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_r x y z : 0 < z x < y x * z < y * z.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_r. Qed.
Lemma Qcmult_pos_pos x y : 0 < x 0 < y 0 < x * y.
Proof.
intros. apply Qcle_lt_trans with (0 * y); [by rewrite Qcmult_0_l|].
by apply Qcmult_lt_mono_pos_r.
Qed.
Lemma Qcmult_nonneg_nonneg x y : 0 x 0 y 0 x * y.
Proof.
intros. trans (0 * y); [by rewrite Qcmult_0_l|].
by apply Qcmult_le_mono_nonneg_r.
Qed.
Lemma Qcinv_pos x : 0 < x 0 < /x.
Proof.
intros. assert (0 x) by (by apply Qclt_not_eq).
by rewrite (Qcmult_lt_mono_pos_r _ _ x), Qcmult_0_l, Qcmult_inv_l by done.
Qed.
Lemma Z2Qc_inj_0 : Qc_of_Z 0 = 0.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj_1 : Qc_of_Z 1 = 1.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj_2 : Qc_of_Z 2 = 2.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj n m : Qc_of_Z n = Qc_of_Z m n = m.
Proof. by injection 1. Qed.
Lemma Z2Qc_inj_iff n m : Qc_of_Z n = Qc_of_Z m n = m.
Proof. split; [ auto using Z2Qc_inj | by intros -> ]. Qed.
Lemma Z2Qc_inj_le n m : (n m)%Z Qc_of_Z n Qc_of_Z m.
Proof. by rewrite Zle_Qle. Qed.
Lemma Z2Qc_inj_lt n m : (n < m)%Z Qc_of_Z n < Qc_of_Z m.
Proof. by rewrite Zlt_Qlt. Qed.
Lemma Z2Qc_inj_add n m : Qc_of_Z (n + m) = Qc_of_Z n + Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_plus. Qed.
Lemma Z2Qc_inj_mul n m : Qc_of_Z (n * m) = Qc_of_Z n * Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_mult. Qed.
Lemma Z2Qc_inj_opp n : Qc_of_Z (-n) = -Qc_of_Z n.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_opp. Qed.
Lemma Z2Qc_inj_sub n m : Qc_of_Z (n - m) = Qc_of_Z n - Qc_of_Z m.
Proof.
apply Qc_is_canon; simpl.
by rewrite !Qred_correct, <-inject_Z_opp, <-inject_Z_plus.
Qed.
Local Close Scope Qc_scope.
(** * Positive rationals *)
Declare Scope Qp_scope.
Delimit Scope Qp_scope with Qp.
Record Qp := mk_Qp { Qp_to_Qc : Qc ; Qp_prf : (0 < Qp_to_Qc)%Qc }.
Add Printing Constructor Qp.
Bind Scope Qp_scope with Qp.
Global Arguments Qp_to_Qc _%Qp : assert.
Program Definition pos_to_Qp (n : positive) : Qp := mk_Qp (Qc_of_Z $ Z.pos n) _.
Next Obligation. intros n. by rewrite <-Z2Qc_inj_0, <-Z2Qc_inj_lt. Qed.
Global Arguments pos_to_Qp : simpl never.
Local Open Scope Qp_scope.
Module Qp.
Lemma to_Qc_inj_iff p q : Qp_to_Qc p = Qp_to_Qc q p = q.
Proof.
split; [|by intros ->].
destruct p, q; intros; simplify_eq/=; f_equal; apply (proof_irrel _).
Qed.
Global Instance eq_dec : EqDecision Qp.
Proof.
refine (λ p q, cast_if (decide (Qp_to_Qc p = Qp_to_Qc q)));
abstract (by rewrite <-to_Qc_inj_iff).
Defined.
Definition add (p q : Qp) : Qp :=
let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in
mk_Qp (p + q) (Qcplus_pos_pos _ _ Hp Hq).
Global Arguments add : simpl never.
Definition sub (p q : Qp) : option Qp :=
let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in
let pq := (p - q)%Qc in
Hpq guard (0 < pq)%Qc; Some (mk_Qp pq Hpq).
Global Arguments sub : simpl never.
Definition mul (p q : Qp) : Qp :=
let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in
mk_Qp (p * q) (Qcmult_pos_pos _ _ Hp Hq).
Global Arguments mul : simpl never.
Definition inv (q : Qp) : Qp :=
let 'mk_Qp q Hq := q return _ in
mk_Qp (/ q)%Qc (Qcinv_pos _ Hq).
Global Arguments inv : simpl never.
Definition div (p q : Qp) : Qp := mul p (inv q).
Global Typeclasses Opaque div.
Global Arguments div : simpl never.
Definition le (p q : Qp) : Prop :=
let 'mk_Qp p _ := p in let 'mk_Qp q _ := q in (p q)%Qc.
Definition lt (p q : Qp) : Prop :=
let 'mk_Qp p _ := p in let 'mk_Qp q _ := q in (p < q)%Qc.
Lemma to_Qc_inj_add p q : Qp_to_Qc (add p q) = (Qp_to_Qc p + Qp_to_Qc q)%Qc.
Proof. by destruct p, q. Qed.
Lemma to_Qc_inj_mul p q : Qp_to_Qc (mul p q) = (Qp_to_Qc p * Qp_to_Qc q)%Qc.
Proof. by destruct p, q. Qed.
Lemma to_Qc_inj_le p q : le p q (Qp_to_Qc p Qp_to_Qc q)%Qc.
Proof. by destruct p, q. Qed.
Lemma to_Qc_inj_lt p q : lt p q (Qp_to_Qc p < Qp_to_Qc q)%Qc.
Proof. by destruct p, q. Qed.
Global Instance le_dec : RelDecision le.
Proof.
refine (λ p q, cast_if (decide (Qp_to_Qc p Qp_to_Qc q)%Qc));
abstract (by rewrite to_Qc_inj_le).
Defined.
Global Instance lt_dec : RelDecision lt.
Proof.
refine (λ p q, cast_if (decide (Qp_to_Qc p < Qp_to_Qc q)%Qc));
abstract (by rewrite to_Qc_inj_lt).
Defined.
Global Instance lt_pi p q : ProofIrrel (lt p q).
Proof. destruct p, q; apply _. Qed.
Definition max (q p : Qp) : Qp := if decide (le q p) then p else q.
Definition min (q p : Qp) : Qp := if decide (le q p) then q else p.
Module Import notations.
Infix "+" := add : Qp_scope.
Infix "-" := sub : Qp_scope.
Infix "*" := mul : Qp_scope.
Notation "/ q" := (inv q) : Qp_scope.
Infix "/" := div : Qp_scope.
Notation "1" := (pos_to_Qp 1) : Qp_scope.
Notation "2" := (pos_to_Qp 2) : Qp_scope.
Notation "3" := (pos_to_Qp 3) : Qp_scope.
Notation "4" := (pos_to_Qp 4) : Qp_scope.
Infix "≤" := le : Qp_scope.
Infix "<" := lt : Qp_scope.
Notation "p ≤ q ≤ r" := (p q q r) : Qp_scope.
Notation "p ≤ q < r" := (p q q < r) : Qp_scope.
Notation "p < q < r" := (p < q q < r) : Qp_scope.
Notation "p < q ≤ r" := (p < q q r) : Qp_scope.
Notation "p ≤ q ≤ r ≤ r'" := (p q q r r r') : Qp_scope.
Notation "(≤)" := le (only parsing) : Qp_scope.
Notation "(<)" := lt (only parsing) : Qp_scope.
Infix "`max`" := max : Qp_scope.
Infix "`min`" := min : Qp_scope.
End notations.
Global Hint Extern 0 (_ _)%Qp => reflexivity : core.
Global Instance inhabited : Inhabited Qp := populate 1.
Global Instance add_assoc : Assoc (=) add.
Proof. intros [p ?] [q ?] [r ?]; apply to_Qc_inj_iff, Qcplus_assoc. Qed.
Global Instance add_comm : Comm (=) add.
Proof. intros [p ?] [q ?]; apply to_Qc_inj_iff, Qcplus_comm. Qed.
Global Instance add_inj_r p : Inj (=) (=) (add p).
Proof.
destruct p as [p ?].
intros [q1 ?] [q2 ?]. rewrite <-!to_Qc_inj_iff; simpl. apply (inj (Qcplus p)).
Qed.
Global Instance add_inj_l p : Inj (=) (=) (λ q, q + p).
Proof.
destruct p as [p ?].
intros [q1 ?] [q2 ?]. rewrite <-!to_Qc_inj_iff; simpl. apply (inj (λ q, q + p)%Qc).
Qed.
Global Instance mul_assoc : Assoc (=) mul.
Proof. intros [p ?] [q ?] [r ?]. apply Qp.to_Qc_inj_iff, Qcmult_assoc. Qed.
Global Instance mul_comm : Comm (=) mul.
Proof. intros [p ?] [q ?]; apply Qp.to_Qc_inj_iff, Qcmult_comm. Qed.
Global Instance mul_inj_r p : Inj (=) (=) (mul p).
Proof.
destruct p as [p ?]. intros [q1 ?] [q2 ?]. rewrite <-!Qp.to_Qc_inj_iff; simpl.
intros Hpq.
apply (anti_symm Qcle); apply (Qcmult_le_mono_pos_l _ _ p); by rewrite ?Hpq.
Qed.
Global Instance mul_inj_l p : Inj (=) (=) (λ q, q * p).
Proof.
intros q1 q2 Hpq. apply (inj (mul p)). by rewrite !(comm_L mul p).
Qed.
Lemma mul_add_distr_l p q r : p * (q + r) = p * q + p * r.
Proof. destruct p, q, r; by apply Qp.to_Qc_inj_iff, Qcmult_plus_distr_r. Qed.
Lemma mul_add_distr_r p q r : (p + q) * r = p * r + q * r.
Proof. destruct p, q, r; by apply Qp.to_Qc_inj_iff, Qcmult_plus_distr_l. Qed.
Lemma mul_1_l p : 1 * p = p.
Proof. destruct p; apply Qp.to_Qc_inj_iff, Qcmult_1_l. Qed.
Lemma mul_1_r p : p * 1 = p.
Proof. destruct p; apply Qp.to_Qc_inj_iff, Qcmult_1_r. Qed.
Global Instance mul_left_id : LeftId (=) 1 mul := mul_1_l.
Global Instance mul_right_id : RightId (=) 1 mul := mul_1_r.
Lemma add_1_1 : 1 + 1 = 2.
Proof. compute_done. Qed.
Lemma add_diag p : p + p = 2 * p.
Proof. by rewrite <-add_1_1, mul_add_distr_r, !mul_1_l. Qed.
Lemma mul_inv_l p : /p * p = 1.
Proof.
destruct p as [p ?]; apply Qp.to_Qc_inj_iff; simpl.
by rewrite Qcmult_inv_l, Z2Qc_inj_1 by (by apply not_symmetry, Qclt_not_eq).
Qed.
Lemma mul_inv_r p : p * /p = 1.
Proof. by rewrite (comm_L mul), mul_inv_l. Qed.
Lemma inv_mul_distr p q : /(p * q) = /p * /q.
Proof.
apply (inj (mul (p * q))).
rewrite mul_inv_r, (comm_L mul p), <-(assoc_L _), (assoc_L mul p).
by rewrite mul_inv_r, mul_1_l, mul_inv_r.
Qed.
Lemma inv_involutive p : / /p = p.
Proof.
rewrite <-(mul_1_l (/ /p)), <-(mul_inv_r p), <-(assoc_L _).
by rewrite mul_inv_r, mul_1_r.
Qed.
Global Instance inv_inj : Inj (=) (=) inv.
Proof.
intros p1 p2 Hp. apply (inj (mul (/p1))).
by rewrite mul_inv_l, Hp, mul_inv_l.
Qed.
Lemma inv_1 : /1 = 1.
Proof. compute_done. Qed.
Lemma inv_half_half : /2 + /2 = 1.
Proof. compute_done. Qed.
Lemma inv_quarter_quarter : /4 + /4 = /2.
Proof. compute_done. Qed.
Lemma div_diag p : p / p = 1.
Proof. apply mul_inv_r. Qed.
Lemma mul_div_l p q : (p / q) * q = p.
Proof. unfold div. by rewrite <-(assoc_L _), mul_inv_l, mul_1_r. Qed.
Lemma mul_div_r p q : q * (p / q) = p.
Proof. by rewrite (comm_L mul q), mul_div_l. Qed.
Lemma div_add_distr p q r : (p + q) / r = p / r + q / r.
Proof. apply mul_add_distr_r. Qed.
Lemma div_div p q r : (p / q) / r = p / (q * r).
Proof. unfold div. by rewrite inv_mul_distr, (assoc_L _). Qed.
Lemma div_mul_cancel_l p q r : (r * p) / (r * q) = p / q.
Proof.
rewrite <-div_div. f_equiv. unfold div.
by rewrite (comm_L mul r), <-(assoc_L _), mul_inv_r, mul_1_r.
Qed.
Lemma div_mul_cancel_r p q r : (p * r) / (q * r) = p / q.
Proof. by rewrite <-!(comm_L mul r), div_mul_cancel_l. Qed.
Lemma div_1 p : p / 1 = p.
Proof. by rewrite <-(mul_1_r (p / 1)), mul_div_l. Qed.
Lemma div_2 p : p / 2 + p / 2 = p.
Proof.
rewrite <-div_add_distr, add_diag.
rewrite <-(mul_1_r 2) at 2. by rewrite div_mul_cancel_l, div_1.
Qed.
Lemma div_2_mul p q : p / (2 * q) + p / (2 * q) = p / q.
Proof. by rewrite <-div_add_distr, add_diag, div_mul_cancel_l. Qed.
Global Instance div_right_id : RightId (=) 1 div := div_1.
Lemma half_half : 1 / 2 + 1 / 2 = 1.
Proof. compute_done. Qed.
Lemma quarter_quarter : 1 / 4 + 1 / 4 = 1 / 2.
Proof. compute_done. Qed.
Lemma quarter_three_quarter : 1 / 4 + 3 / 4 = 1.
Proof. compute_done. Qed.
Lemma three_quarter_quarter : 3 / 4 + 1 / 4 = 1.
Proof. compute_done. Qed.
Global Instance div_inj_r p : Inj (=) (=) (div p).
Proof. unfold div; apply _. Qed.
Global Instance div_inj_l p : Inj (=) (=) (λ q, q / p)%Qp.
Proof. unfold div; apply _. Qed.
Global Instance le_po : PartialOrder ().
Proof.
split; [split|].
- intros p. by apply to_Qc_inj_le.
- intros p q r. rewrite !to_Qc_inj_le. by etrans.
- intros p q. rewrite !to_Qc_inj_le, <-to_Qc_inj_iff. apply Qcle_antisym.
Qed.
Global Instance lt_strict : StrictOrder (<).
Proof.
split.
- intros p ?%to_Qc_inj_lt. by apply (irreflexivity (<)%Qc (Qp_to_Qc p)).
- intros p q r. rewrite !to_Qc_inj_lt. by etrans.
Qed.
Global Instance le_total: Total ().
Proof. intros p q. rewrite !to_Qc_inj_le. apply (total Qcle). Qed.
Lemma lt_le_incl p q : p < q p q.
Proof. rewrite to_Qc_inj_lt, to_Qc_inj_le. apply Qclt_le_weak. Qed.
Lemma le_lteq p q : p q p < q p = q.
Proof.
rewrite to_Qc_inj_lt, to_Qc_inj_le, <-Qp.to_Qc_inj_iff. split.
- intros [?| ->]%Qcle_lt_or_eq; auto.
- intros [?| ->]; auto using Qclt_le_weak.
Qed.
Lemma lt_ge_cases p q : {p < q} + {q p}.
Proof.
refine (cast_if (Qclt_le_dec (Qp_to_Qc p) (Qp_to_Qc q)%Qc));
[by apply to_Qc_inj_lt|by apply to_Qc_inj_le].
Defined.
Lemma le_lt_trans p q r : p q q < r p < r.
Proof. rewrite !to_Qc_inj_lt, to_Qc_inj_le. apply Qcle_lt_trans. Qed.
Lemma lt_le_trans p q r : p < q q r p < r.
Proof. rewrite !to_Qc_inj_lt, to_Qc_inj_le. apply Qclt_le_trans. Qed.
Lemma le_ngt p q : p q ¬q < p.
Proof.
rewrite !to_Qc_inj_lt, to_Qc_inj_le.
split; auto using Qcle_not_lt, Qcnot_lt_le.
Qed.
Lemma lt_nge p q : p < q ¬q p.
Proof.
rewrite !to_Qc_inj_lt, to_Qc_inj_le.
split; auto using Qclt_not_le, Qcnot_le_lt.
Qed.
Lemma add_le_mono_l p q r : p q r + p r + q.
Proof. rewrite !to_Qc_inj_le. destruct p, q, r; apply Qcplus_le_mono_l. Qed.
Lemma add_le_mono_r p q r : p q p + r q + r.
Proof. rewrite !(comm_L add _ r). apply add_le_mono_l. Qed.
Lemma add_le_mono q p n m : q n p m q + p n + m.
Proof. intros. etrans; [by apply add_le_mono_l|by apply add_le_mono_r]. Qed.
Lemma add_lt_mono_l p q r : p < q r + p < r + q.
Proof. by rewrite !lt_nge, <-add_le_mono_l. Qed.
Lemma add_lt_mono_r p q r : p < q p + r < q + r.
Proof. by rewrite !lt_nge, <-add_le_mono_r. Qed.
Lemma add_lt_mono q p n m : q < n p < m q + p < n + m.
Proof. intros. etrans; [by apply add_lt_mono_l|by apply add_lt_mono_r]. Qed.
Lemma mul_le_mono_l p q r : p q r * p r * q.
Proof.
rewrite !to_Qc_inj_le. destruct p, q, r; by apply Qcmult_le_mono_pos_l.
Qed.
Lemma mul_le_mono_r p q r : p q p * r q * r.
Proof. rewrite !(comm_L mul _ r). apply mul_le_mono_l. Qed.
Lemma mul_le_mono q p n m : q n p m q * p n * m.
Proof. intros. etrans; [by apply mul_le_mono_l|by apply mul_le_mono_r]. Qed.
Lemma mul_lt_mono_l p q r : p < q r * p < r * q.
Proof.
rewrite !to_Qc_inj_lt. destruct p, q, r; by apply Qcmult_lt_mono_pos_l.
Qed.
Lemma mul_lt_mono_r p q r : p < q p * r < q * r.
Proof. rewrite !(comm_L mul _ r). apply mul_lt_mono_l. Qed.
Lemma mul_lt_mono q p n m : q < n p < m q * p < n * m.
Proof. intros. etrans; [by apply mul_lt_mono_l|by apply mul_lt_mono_r]. Qed.
Lemma lt_add_l p q : p < p + q.
Proof.
destruct p as [p ?], q as [q ?]. apply to_Qc_inj_lt; simpl.
rewrite <- (Qcplus_0_r p) at 1. by rewrite <-Qcplus_lt_mono_l.
Qed.
Lemma lt_add_r p q : q < p + q.
Proof. rewrite (comm_L add). apply lt_add_l. Qed.
Lemma not_add_le_l p q : ¬(p + q p).
Proof. apply lt_nge, lt_add_l. Qed.
Lemma not_add_le_r p q : ¬(p + q q).
Proof. apply lt_nge, lt_add_r. Qed.
Lemma add_id_free q p : q + p q.
Proof. intro Heq. apply (not_add_le_l q p). by rewrite Heq. Qed.
Lemma le_add_l p q : p p + q.
Proof. apply lt_le_incl, lt_add_l. Qed.
Lemma le_add_r p q : q p + q.
Proof. apply lt_le_incl, lt_add_r. Qed.
Lemma sub_Some p q r : p - q = Some r p = q + r.
Proof.
destruct p as [p Hp], q as [q Hq], r as [r Hr].
unfold sub, add; simpl; rewrite <-Qp.to_Qc_inj_iff; simpl. split.
- intros; simplify_option_eq. unfold Qcminus.
by rewrite (Qcplus_comm p), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l.
- intros ->. unfold Qcminus.
rewrite <-Qcplus_assoc, (Qcplus_comm r), Qcplus_assoc.
rewrite Qcplus_opp_r, Qcplus_0_l. simplify_option_eq; [|done].
f_equal. by apply Qp.to_Qc_inj_iff.
Qed.
Lemma lt_sum p q : p < q r, q = p + r.
Proof.
destruct p as [p Hp], q as [q Hq]. rewrite to_Qc_inj_lt; simpl.
split.
- intros Hlt%Qclt_minus_iff. exists (mk_Qp (q - p) Hlt).
apply Qp.to_Qc_inj_iff; simpl. unfold Qcminus.
by rewrite (Qcplus_comm q), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l.
- intros [[r ?] ?%Qp.to_Qc_inj_iff]; simplify_eq/=.
rewrite <-(Qcplus_0_r p) at 1. by apply Qcplus_lt_mono_l.
Qed.
Lemma sub_None p q : p - q = None p q.
Proof.
rewrite le_ngt, lt_sum, eq_None_not_Some.
by setoid_rewrite <-sub_Some.
Qed.
Lemma sub_diag p : p - p = None.
Proof. by apply sub_None. Qed.
Lemma add_sub p q : (p + q) - q = Some p.
Proof. apply sub_Some. by rewrite (comm_L add). Qed.
Lemma inv_lt_mono p q : p < q /q < /p.
Proof.
revert p q. cut ( p q, p < q / q < / p).
{ intros help p q. split; [apply help|]. intros.
rewrite <-(inv_involutive p), <-(inv_involutive q). by apply help. }
intros p q Hpq. apply (mul_lt_mono_l _ _ q). rewrite mul_inv_r.
apply (mul_lt_mono_r _ _ p). rewrite <-(assoc_L _), mul_inv_l.
by rewrite mul_1_l, mul_1_r.
Qed.
Lemma inv_le_mono p q : p q /q /p.
Proof. by rewrite !le_ngt, inv_lt_mono. Qed.
Lemma div_le_mono_l p q r : q p r / p r / q.
Proof. unfold div. by rewrite <-mul_le_mono_l, inv_le_mono. Qed.
Lemma div_le_mono_r p q r : p q p / r q / r.
Proof. apply mul_le_mono_r. Qed.
Lemma div_lt_mono_l p q r : q < p r / p < r / q.
Proof. unfold div. by rewrite <-mul_lt_mono_l, inv_lt_mono. Qed.
Lemma div_lt_mono_r p q r : p < q p / r < q / r.
Proof. apply mul_lt_mono_r. Qed.
Lemma div_lt p q : 1 < q p / q < p.
Proof. by rewrite (div_lt_mono_l _ _ p), div_1. Qed.
Lemma div_le p q : 1 q p / q p.
Proof. by rewrite (div_le_mono_l _ _ p), div_1. Qed.
Lemma lower_bound q1 q2 : q q1' q2', q1 = q + q1' q2 = q + q2'.
Proof.
revert q1 q2. cut ( q1 q2 : Qp, q1 q2
q q1' q2', q1 = q + q1' q2 = q + q2').
{ intros help q1 q2.
destruct (lt_ge_cases q2 q1) as [Hlt|Hle]; eauto.
destruct (help q2 q1) as (q&q1'&q2'&?&?); eauto using lt_le_incl. }
intros q1 q2 Hq. exists (q1 / 2)%Qp, (q1 / 2)%Qp.
assert (q1 / 2 < q2) as [q2' ->]%lt_sum.
{ eapply lt_le_trans, Hq. by apply div_lt. }
eexists; split; [|done]. by rewrite div_2.
Qed.
Lemma lower_bound_lt q1 q2 : q : Qp, q < q1 q < q2.
Proof.
destruct (lower_bound q1 q2) as (qmin & q1' & q2' & [-> ->]).
exists qmin. split; eapply lt_sum; eauto.
Qed.
Lemma cross_split a b c d :
a + b = c + d
ac ad bc bd, ac + ad = a bc + bd = b ac + bc = c ad + bd = d.
Proof.
intros H. revert a b c d H. cut ( a b c d : Qp,
a < c a + b = c + d
ac ad bc bd, ac + ad = a bc + bd = b ac + bc = c ad + bd = d)%Qp.
{ intros help a b c d Habcd.
destruct (lt_ge_cases a c) as [?|[?| ->]%le_lteq].
- auto.
- destruct (help c d a b); [done..|]. naive_solver.
- apply (inj (add a)) in Habcd as ->.
destruct (lower_bound a d) as (q&a'&d'&->&->).
exists a', q, q, d'. repeat split; done || by rewrite (comm_L add). }
intros a b c d [e ->]%lt_sum. rewrite <-(assoc_L _). intros ->%(inj (add a)).
destruct (lower_bound a d) as (q&a'&d'&->&->).
eexists a', q, (q + e)%Qp, d'; split_and?; [by rewrite (comm_L add)|..|done].
- by rewrite (assoc_L _), (comm_L add e).
- by rewrite (assoc_L _), (comm_L add a').
Qed.
Lemma bounded_split p r : q1 q2 : Qp, q1 r p = q1 + q2.
Proof.
destruct (lt_ge_cases r p) as [[q ->]%lt_sum|?].
{ by exists r, q. }
exists (p / 2)%Qp, (p / 2)%Qp; split.
+ trans p; [|done]. by apply div_le.
+ by rewrite div_2.
Qed.
Lemma max_spec q p : (q < p q `max` p = p) (p q q `max` p = q).
Proof.
unfold max.
destruct (decide (q p)) as [[?| ->]%le_lteq|?]; [by auto..|].
right. split; [|done]. by apply lt_le_incl, lt_nge.
Qed.
Lemma max_spec_le q p : (q p q `max` p = p) (p q q `max` p = q).
Proof. destruct (max_spec q p) as [[?%lt_le_incl?]|]; [left|right]; done. Qed.
Global Instance max_assoc : Assoc (=) max.
Proof.
intros q p o. unfold max. destruct (decide (q p)), (decide (p o));
try by rewrite ?decide_True by (by etrans).
rewrite decide_False by done.
by rewrite decide_False by (apply lt_nge; etrans; by apply lt_nge).
Qed.
Global Instance max_comm : Comm (=) max.
Proof.
intros q p.
destruct (max_spec_le q p) as [[?->]|[?->]],
(max_spec_le p q) as [[?->]|[?->]]; done || by apply (anti_symm ()).
Qed.
Lemma max_id q : q `max` q = q.
Proof. by destruct (max_spec q q) as [[_->]|[_->]]. Qed.
Lemma le_max_l q p : q q `max` p.
Proof. unfold max. by destruct (decide (q p)). Qed.
Lemma le_max_r q p : p q `max` p.
Proof. rewrite (comm_L max q). apply le_max_l. Qed.
Lemma max_add q p : q `max` p q + p.
Proof.
unfold max.
destruct (decide (q p)); [apply le_add_r|apply le_add_l].
Qed.
Lemma max_lub_l q p o : q `max` p o q o.
Proof. unfold max. destruct (decide (q p)); [by etrans|done]. Qed.
Lemma max_lub_r q p o : q `max` p o p o.
Proof. rewrite (comm _ q). apply max_lub_l. Qed.
Lemma min_spec q p : (q < p q `min` p = q) (p q q `min` p = p).
Proof.
unfold min.
destruct (decide (q p)) as [[?| ->]%le_lteq|?]; [by auto..|].
right. split; [|done]. by apply lt_le_incl, lt_nge.
Qed.
Lemma min_spec_le q p : (q p q `min` p = q) (p q q `min` p = p).
Proof. destruct (min_spec q p) as [[?%lt_le_incl ?]|]; [left|right]; done. Qed.
Global Instance min_assoc : Assoc (=) min.
Proof.
intros q p o. unfold min.
destruct (decide (q p)), (decide (p o)); eauto using decide_False.
- by rewrite !decide_True by (by etrans).
- by rewrite decide_False by (apply lt_nge; etrans; by apply lt_nge).
Qed.
Global Instance min_comm : Comm (=) min.
Proof.
intros q p.
destruct (min_spec_le q p) as [[?->]|[?->]],
(min_spec_le p q) as [[? ->]|[? ->]]; done || by apply (anti_symm ()).
Qed.
Lemma min_id q : q `min` q = q.
Proof. by destruct (min_spec q q) as [[_->]|[_->]]. Qed.
Lemma le_min_r q p : q `min` p p.
Proof. by destruct (min_spec_le q p) as [[?->]|[?->]]. Qed.
Lemma le_min_l p q : p `min` q p.
Proof. rewrite (comm_L min p). apply le_min_r. Qed.
Lemma min_l_iff q p : q `min` p = q q p.
Proof.
destruct (min_spec_le q p) as [[?->]|[?->]]; [done|].
split; [by intros ->|]. intros. by apply (anti_symm ()).
Qed.
Lemma min_r_iff q p : q `min` p = p p q.
Proof. rewrite (comm_L min q). apply min_l_iff. Qed.
End Qp.
Export Qp.notations.
Lemma pos_to_Qp_1 : pos_to_Qp 1 = 1.
Proof. compute_done. Qed.
Lemma pos_to_Qp_inj n m : pos_to_Qp n = pos_to_Qp m n = m.
Proof. by injection 1. Qed.
Lemma pos_to_Qp_inj_iff n m : pos_to_Qp n = pos_to_Qp m n = m.
Proof. split; [apply pos_to_Qp_inj|by intros ->]. Qed.
Lemma pos_to_Qp_inj_le n m : (n m)%positive pos_to_Qp n pos_to_Qp m.
Proof. rewrite Qp.to_Qc_inj_le; simpl. by rewrite <-Z2Qc_inj_le. Qed.
Lemma pos_to_Qp_inj_lt n m : (n < m)%positive pos_to_Qp n < pos_to_Qp m.
Proof. by rewrite Pos.lt_nle, Qp.lt_nge, <-pos_to_Qp_inj_le. Qed.
Lemma pos_to_Qp_add x y : pos_to_Qp x + pos_to_Qp y = pos_to_Qp (x + y).
Proof. apply Qp.to_Qc_inj_iff; simpl. by rewrite Pos2Z.inj_add, Z2Qc_inj_add. Qed.
Lemma pos_to_Qp_mul x y : pos_to_Qp x * pos_to_Qp y = pos_to_Qp (x * y).
Proof. apply Qp.to_Qc_inj_iff; simpl. by rewrite Pos2Z.inj_mul, Z2Qc_inj_mul. Qed.
Local Close Scope Qp_scope.
(** * Helper for working with accessing lists with wrap-around
See also [rotate] and [rotate_take] in [list.v] *)
(** [rotate_nat_add base offset len] computes [(base + offset) `mod`
len]. This is useful in combination with the [rotate] function on
lists, since the index [i] of [rotate n l] corresponds to the index
[rotate_nat_add n i (length i)] of the original list. The definition
uses [Z] for consistency with [rotate_nat_sub]. **)
Definition rotate_nat_add (base offset len : nat) : nat :=
Z.to_nat ((Z.of_nat base + Z.of_nat offset) `mod` Z.of_nat len)%Z.
(** [rotate_nat_sub base offset len] is the inverse of [rotate_nat_add
base offset len]. The definition needs to use modulo on [Z] instead of
on nat since otherwise we need the sidecondition [base < len] on
[rotate_nat_sub_add]. **)
Definition rotate_nat_sub (base offset len : nat) : nat :=
Z.to_nat ((Z.of_nat len + Z.of_nat offset - Z.of_nat base) `mod` Z.of_nat len)%Z.
Lemma rotate_nat_add_add_mod base offset len:
rotate_nat_add base offset len =
rotate_nat_add (base `mod` len) offset len.
Proof. unfold rotate_nat_add. by rewrite Nat2Z.inj_mod, Zplus_mod_idemp_l. Qed.
Lemma rotate_nat_add_alt base offset len:
base < len offset < len
rotate_nat_add base offset len =
if decide (base + offset < len) then base + offset else base + offset - len.
Proof.
unfold rotate_nat_add. intros ??. case_decide.
- rewrite Z.mod_small by lia. by rewrite <-Nat2Z.inj_add, Nat2Z.id.
- rewrite (Z.mod_in_range 1) by lia.
by rewrite Z.mul_1_l, <-Nat2Z.inj_add, <-Nat2Z.inj_sub,Nat2Z.id by lia.
Qed.
Lemma rotate_nat_sub_alt base offset len:
base < len offset < len
rotate_nat_sub base offset len =
if decide (offset < base) then len + offset - base else offset - base.
Proof.
unfold rotate_nat_sub. intros ??. case_decide.
- rewrite Z.mod_small by lia.
by rewrite <-Nat2Z.inj_add, <-Nat2Z.inj_sub, Nat2Z.id by lia.
- rewrite (Z.mod_in_range 1) by lia.
rewrite Z.mul_1_l, <-Nat2Z.inj_add, <-!Nat2Z.inj_sub,Nat2Z.id; lia.
Qed.
Lemma rotate_nat_add_0 base len :
base < len rotate_nat_add base 0 len = base.
Proof.
intros ?. unfold rotate_nat_add.
rewrite Z.mod_small by lia. by rewrite Z.add_0_r, Nat2Z.id.
Qed.
Lemma rotate_nat_sub_0 base len :
base < len rotate_nat_sub base base len = 0.
Proof. intros ?. rewrite rotate_nat_sub_alt by done. case_decide; lia. Qed.
Lemma rotate_nat_add_lt base offset len :
0 < len rotate_nat_add base offset len < len.
Proof.
unfold rotate_nat_add. intros ?.
pose proof (Nat.mod_upper_bound (base + offset) len).
rewrite Z2Nat.inj_mod, Z2Nat.inj_add, !Nat2Z.id; lia.
Qed.
Lemma rotate_nat_sub_lt base offset len :
0 < len rotate_nat_sub base offset len < len.
Proof.
unfold rotate_nat_sub. intros ?.
pose proof (Z_mod_lt (Z.of_nat len + Z.of_nat offset - Z.of_nat base) (Z.of_nat len)).
apply Nat2Z.inj_lt. rewrite Z2Nat.id; lia.
Qed.
Lemma rotate_nat_add_sub base len offset:
offset < len
rotate_nat_add base (rotate_nat_sub base offset len) len = offset.
Proof.
intros ?. unfold rotate_nat_add, rotate_nat_sub.
rewrite Z2Nat.id by (apply Z.mod_pos; lia). rewrite Zplus_mod_idemp_r.
replace (Z.of_nat base + (Z.of_nat len + Z.of_nat offset - Z.of_nat base))%Z
with (Z.of_nat len + Z.of_nat offset)%Z by lia.
rewrite (Z.mod_in_range 1) by lia.
rewrite Z.mul_1_l, <-Nat2Z.inj_add, <-!Nat2Z.inj_sub,Nat2Z.id; lia.
Qed.
Lemma rotate_nat_sub_add base len offset:
offset < len
rotate_nat_sub base (rotate_nat_add base offset len) len = offset.
Proof.
intros ?. unfold rotate_nat_add, rotate_nat_sub.
rewrite Z2Nat.id by (apply Z.mod_pos; lia).
assert ( n, (Z.of_nat len + n - Z.of_nat base) = ((Z.of_nat len - Z.of_nat base) + n))%Z
as -> by naive_solver lia.
rewrite Zplus_mod_idemp_r.
replace (Z.of_nat len - Z.of_nat base + (Z.of_nat base + Z.of_nat offset))%Z with
(Z.of_nat len + Z.of_nat offset)%Z by lia.
rewrite (Z.mod_in_range 1) by lia.
rewrite Z.mul_1_l, <-Nat2Z.inj_add, <-!Nat2Z.inj_sub,Nat2Z.id; lia.
Qed.
Lemma rotate_nat_add_add base offset len n:
0 < len
rotate_nat_add base (offset + n) len =
(rotate_nat_add base offset len + n) `mod` len.
Proof.
intros ?. unfold rotate_nat_add.
rewrite !Z2Nat.inj_mod, !Z2Nat.inj_add, !Nat2Z.id by lia.
by rewrite Nat.add_assoc, Nat.add_mod_idemp_l by lia.
Qed.
Lemma rotate_nat_add_S base offset len:
0 < len
rotate_nat_add base (S offset) len =
S (rotate_nat_add base offset len) `mod` len.
Proof. intros ?. by rewrite <-Nat.add_1_r, rotate_nat_add_add, Nat.add_1_r. Qed.
......@@ -13,16 +13,20 @@ Lemma None_ne_Some {A} (x : A) : None ≠ Some x.
Proof. congruence. Qed.
Lemma Some_ne_None {A} (x : A) : Some x None.
Proof. congruence. Qed.
Lemma eq_None_ne_Some {A} (mx : option A) x : mx = None mx Some x.
Proof. congruence. Qed.
Instance Some_inj {A} : Inj (=) (=) (@Some A).
Lemma eq_None_ne_Some {A} (mx : option A) : ( x, mx Some x) mx = None.
Proof. destruct mx; split; congruence. Qed.
Lemma eq_None_ne_Some_1 {A} (mx : option A) x : mx = None mx Some x.
Proof. intros ?. by apply eq_None_ne_Some. Qed.
Lemma eq_None_ne_Some_2 {A} (mx : option A) : ( x, mx Some x) mx = None.
Proof. intros ?. by apply eq_None_ne_Some. Qed.
Global Instance Some_inj {A} : Inj (=) (=) (@Some A).
Proof. congruence. Qed.
(** The [from_option] is the eliminator for option. *)
Definition from_option {A B} (f : A B) (y : B) (mx : option A) : B :=
match mx with None => y | Some x => f x end.
Instance: Params (@from_option) 3 := {}.
Arguments from_option {_ _} _ _ !_ / : assert.
Global Instance: Params (@from_option) 2 := {}.
Global Arguments from_option {_ _} _ _ !_ / : assert.
(** The eliminator with the identity function. *)
Notation default := (from_option id).
......@@ -38,25 +42,28 @@ Lemma option_eq_1_alt {A} (mx my : option A) x :
Proof. congruence. Qed.
Definition is_Some {A} (mx : option A) := x, mx = Some x.
Instance: Params (@is_Some) 1 := {}.
Global Instance: Params (@is_Some) 1 := {}.
(** We avoid calling [done] recursively as that can lead to an unresolved evar. *)
Global Hint Extern 0 (is_Some _) => eexists; fast_done : core.
Lemma is_Some_alt {A} (mx : option A) :
is_Some mx match mx with Some _ => True | None => False end.
Proof. unfold is_Some. destruct mx; naive_solver. Qed.
Lemma mk_is_Some {A} (mx : option A) x : mx = Some x is_Some mx.
Proof. intros; red; subst; eauto. Qed.
Hint Resolve mk_is_Some : core.
Proof. by intros ->. Qed.
Global Hint Resolve mk_is_Some : core.
Lemma is_Some_None {A} : ¬is_Some (@None A).
Proof. by destruct 1. Qed.
Hint Resolve is_Some_None : core.
Global Hint Resolve is_Some_None : core.
Lemma eq_None_not_Some {A} (mx : option A) : mx = None ¬is_Some mx.
Proof. rewrite is_Some_alt; destruct mx; naive_solver. Qed.
Lemma not_eq_None_Some {A} (mx : option A) : mx None is_Some mx.
Proof. rewrite is_Some_alt; destruct mx; naive_solver. Qed.
Instance is_Some_pi {A} (mx : option A) : ProofIrrel (is_Some mx).
Global Instance is_Some_pi {A} (mx : option A) : ProofIrrel (is_Some mx).
Proof.
set (P (mx : option A) := match mx with Some _ => True | _ => False end).
set (f mx := match mx return P mx is_Some mx with
......@@ -67,7 +74,7 @@ Proof.
intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct mx, p1.
Qed.
Instance is_Some_dec {A} (mx : option A) : Decision (is_Some mx) :=
Global Instance is_Some_dec {A} (mx : option A) : Decision (is_Some mx) :=
match mx with
| Some x => left (ex_intro _ x eq_refl)
| None => right is_Some_None
......@@ -103,60 +110,60 @@ Section Forall2.
Global Instance option_Forall2_sym : Symmetric R Symmetric (option_Forall2 R).
Proof. destruct 2; by constructor. Qed.
Global Instance option_Forall2_trans : Transitive R Transitive (option_Forall2 R).
Proof. destruct 2; inversion_clear 1; constructor; etrans; eauto. Qed.
Proof. destruct 2; inv 1; constructor; etrans; eauto. Qed.
Global Instance option_Forall2_equiv : Equivalence R Equivalence (option_Forall2 R).
Proof. destruct 1; split; apply _. Qed.
Lemma option_eq_Forall2 (mx my : option A) :
mx = my option_Forall2 eq mx my.
Proof.
split.
- intros ->. destruct my; constructor; done.
- intros [|]; naive_solver.
Qed.
End Forall2.
(** Setoids *)
Instance option_equiv `{Equiv A} : Equiv (option A) := option_Forall2 ().
Global Instance option_equiv `{Equiv A} : Equiv (option A) := option_Forall2 ().
Section setoids.
Context `{Equiv A}.
Implicit Types mx my : option A.
Lemma equiv_option_Forall2 mx my : mx my option_Forall2 () mx my.
Lemma option_equiv_Forall2 mx my : mx my option_Forall2 () mx my.
Proof. done. Qed.
Global Instance option_equivalence :
Equivalence (≡@{A}) Equivalence (≡@{option A}).
Proof. apply _. Qed.
Global Instance option_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (option A).
Proof. intros x y; destruct 1; f_equal; by apply leibniz_equiv. Qed.
Global Instance Some_proper : Proper (() ==> (≡@{option A})) Some.
Proof. by constructor. Qed.
Global Instance Some_equiv_inj : Inj () (≡@{option A}) Some.
Proof. by inversion_clear 1. Qed.
Global Instance option_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (option A).
Proof. intros x y; destruct 1; f_equal; by apply leibniz_equiv. Qed.
Proof. by inv 1. Qed.
Lemma equiv_None mx : mx None mx = None.
Proof. split; [by inversion_clear 1|intros ->; constructor]. Qed.
Lemma equiv_Some_inv_l mx my x :
mx my mx = Some x y, my = Some y x y.
Proof. destruct 1; naive_solver. Qed.
Lemma equiv_Some_inv_r mx my y :
mx my my = Some y x, mx = Some x x y.
Proof. destruct 1; naive_solver. Qed.
Lemma equiv_Some_inv_l' my x : Some x my x', Some x' = my x x'.
Proof. intros ?%(equiv_Some_inv_l _ _ x); naive_solver. Qed.
Lemma equiv_Some_inv_r' `{!Equivalence (≡@{A})} mx y :
mx Some y y', mx = Some y' y y'.
Proof. intros ?%(equiv_Some_inv_r _ _ y); naive_solver. Qed.
Lemma None_equiv_eq mx : mx None mx = None.
Proof. split; [by inv 1|intros ->; constructor]. Qed.
Lemma Some_equiv_eq mx y : mx Some y y', mx = Some y' y' y.
Proof. split; [inv 1; naive_solver|naive_solver (by constructor)]. Qed.
Global Instance is_Some_proper : Proper ((≡@{option A}) ==> iff) is_Some.
Proof. inversion_clear 1; split; eauto. Qed.
Global Instance from_option_proper {B} (R : relation B) (f : A B) :
Proper (() ==> R) f Proper (R ==> () ==> R) (from_option f).
Proof. by inv 1. Qed.
Global Instance from_option_proper {B} (R : relation B) :
Proper (((≡@{A}) ==> R) ==> R ==> () ==> R) from_option.
Proof. destruct 3; simpl; auto. Qed.
End setoids.
Typeclasses Opaque option_equiv.
Global Typeclasses Opaque option_equiv.
(** Equality on [option] is decidable. *)
Instance option_eq_None_dec {A} (mx : option A) : Decision (mx = None) :=
Global Instance option_eq_None_dec {A} (mx : option A) : Decision (mx = None) :=
match mx with Some _ => right (Some_ne_None _) | None => left eq_refl end.
Instance option_None_eq_dec {A} (mx : option A) : Decision (None = mx) :=
Global Instance option_None_eq_dec {A} (mx : option A) : Decision (None = mx) :=
match mx with Some _ => right (None_ne_Some _) | None => left eq_refl end.
Instance option_eq_dec `{dec : EqDecision A} : EqDecision (option A).
Global Instance option_eq_dec `{dec : EqDecision A} : EqDecision (option A).
Proof.
refine (λ mx my,
match mx, my with
......@@ -166,14 +173,26 @@ Proof.
Defined.
(** * Monadic operations *)
Instance option_ret: MRet option := @Some.
Instance option_bind: MBind option := λ A B f mx,
Global Instance option_ret: MRet option := @Some.
Global Instance option_bind: MBind option := λ A B f mx,
match mx with Some x => f x | None => None end.
Instance option_join: MJoin option := λ A mmx,
Global Instance option_join: MJoin option := λ A mmx,
match mmx with Some mx => mx | None => None end.
Instance option_fmap: FMap option := @option_map.
Instance option_guard: MGuard option := λ P dec A f,
match dec with left H => f H | _ => None end.
Global Instance option_fmap: FMap option := @option_map.
Global Instance option_mfail: MFail option := λ _ _, None.
Lemma option_fmap_inj {A B} (R1 : A A Prop) (R2 : B B Prop) (f : A B) :
Inj R1 R2 f Inj (option_Forall2 R1) (option_Forall2 R2) (fmap f).
Proof. intros ? [?|] [?|]; inv 1; constructor; auto. Qed.
Global Instance option_fmap_eq_inj {A B} (f : A B) :
Inj (=) (=) f Inj (=@{option A}) (=@{option B}) (fmap f).
Proof.
intros ?%option_fmap_inj ?? ?%option_eq_Forall2%(inj _).
by apply option_eq_Forall2.
Qed.
Global Instance option_fmap_equiv_inj `{Equiv A, Equiv B} (f : A B) :
Inj () () f Inj (≡@{option A}) (≡@{option B}) (fmap f).
Proof. apply option_fmap_inj. Qed.
Lemma fmap_is_Some {A B} (f : A B) mx : is_Some (f <$> mx) is_Some mx.
Proof. unfold is_Some; destruct mx; naive_solver. Qed.
......@@ -191,8 +210,8 @@ Proof.
destruct mx; simpl; split.
- intros ?%(inj Some). eauto.
- intros (? & ->%(inj Some) & ?). constructor. done.
- intros ?%symmetry%equiv_None. done.
- intros (? & ? & ?). done.
- intros [=]%symmetry%None_equiv_eq.
- intros (? & [=] & ?).
Qed.
Lemma fmap_Some_equiv_1 {A B} `{Equiv B} `{!Equivalence (≡@{B})} (f : A B) mx y :
f <$> mx Some y x, mx = Some x y f x.
......@@ -201,15 +220,16 @@ Lemma fmap_None {A B} (f : A → B) mx : f <$> mx = None ↔ mx = None.
Proof. by destruct mx. Qed.
Lemma option_fmap_id {A} (mx : option A) : id <$> mx = mx.
Proof. by destruct mx. Qed.
Lemma option_fmap_compose {A B} (f : A B) {C} (g : B C) mx :
Lemma option_fmap_compose {A B} (f : A B) {C} (g : B C) (mx : option A) :
g f <$> mx = g <$> (f <$> mx).
Proof. by destruct mx. Qed.
Lemma option_fmap_ext {A B} (f g : A B) mx :
Lemma option_fmap_ext {A B} (f g : A B) (mx : option A) :
( x, f x = g x) f <$> mx = g <$> mx.
Proof. intros; destruct mx; f_equal/=; auto. Qed.
Lemma option_fmap_equiv_ext {A} `{Equiv B} (f g : A B) (mx : option A) :
( x, f x g x) f <$> mx g <$> mx.
Proof. destruct mx; constructor; auto. Qed.
Lemma option_fmap_bind {A B C} (f : A B) (g : B option C) mx :
(f <$> mx) ≫= g = mx ≫= g f.
Proof. by destruct mx. Qed.
......@@ -225,19 +245,22 @@ Proof. intros. by apply option_bind_ext. Qed.
Lemma bind_Some {A B} (f : A option B) (mx : option A) y :
mx ≫= f = Some y x, mx = Some x f x = Some y.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_Some_equiv {A} `{Equiv B} (f : A option B) (mx : option A) y :
mx ≫= f Some y x, mx = Some x f x Some y.
Proof. destruct mx; split; first [by inv 1|naive_solver]. Qed.
Lemma bind_None {A B} (f : A option B) (mx : option A) :
mx ≫= f = None mx = None x, mx = Some x f x = None.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_with_Some {A} (mx : option A) : mx ≫= Some = mx.
Proof. by destruct mx. Qed.
Instance option_fmap_proper `{Equiv A, Equiv B} :
Global Instance option_fmap_proper `{Equiv A, Equiv B} :
Proper ((() ==> ()) ==> (≡@{option A}) ==> (≡@{option B})) fmap.
Proof. destruct 2; constructor; auto. Qed.
Instance option_mbind_proper `{Equiv A, Equiv B} :
Global Instance option_bind_proper `{Equiv A, Equiv B} :
Proper ((() ==> ()) ==> (≡@{option A}) ==> (≡@{option B})) mbind.
Proof. destruct 2; simpl; try constructor; auto. Qed.
Instance option_mjoin_proper `{Equiv A} :
Global Instance option_join_proper `{Equiv A} :
Proper (() ==> (≡@{option (option A)})) mjoin.
Proof. destruct 1 as [?? []|]; simpl; by constructor. Qed.
......@@ -246,62 +269,100 @@ Proof. destruct 1 as [?? []|]; simpl; by constructor. Qed.
not particularly like type level reductions. *)
Class Maybe {A B : Type} (c : A B) :=
maybe : B option A.
Arguments maybe {_ _} _ {_} !_ / : assert.
Global Arguments maybe {_ _} _ {_} !_ / : assert.
Class Maybe2 {A1 A2 B : Type} (c : A1 A2 B) :=
maybe2 : B option (A1 * A2).
Arguments maybe2 {_ _ _} _ {_} !_ / : assert.
Global Arguments maybe2 {_ _ _} _ {_} !_ / : assert.
Class Maybe3 {A1 A2 A3 B : Type} (c : A1 A2 A3 B) :=
maybe3 : B option (A1 * A2 * A3).
Arguments maybe3 {_ _ _ _} _ {_} !_ / : assert.
Global Arguments maybe3 {_ _ _ _} _ {_} !_ / : assert.
Class Maybe4 {A1 A2 A3 A4 B : Type} (c : A1 A2 A3 A4 B) :=
maybe4 : B option (A1 * A2 * A3 * A4).
Arguments maybe4 {_ _ _ _ _} _ {_} !_ / : assert.
Global Arguments maybe4 {_ _ _ _ _} _ {_} !_ / : assert.
Instance maybe_comp `{Maybe B C c1, Maybe A B c2} : Maybe (c1 c2) := λ x,
Global Instance maybe_comp `{Maybe B C c1, Maybe A B c2} : Maybe (c1 c2) := λ x,
maybe c1 x ≫= maybe c2.
Arguments maybe_comp _ _ _ _ _ _ _ !_ / : assert.
Global Arguments maybe_comp _ _ _ _ _ _ _ !_ / : assert.
Instance maybe_inl {A B} : Maybe (@inl A B) := λ xy,
Global Instance maybe_inl {A B} : Maybe (@inl A B) := λ xy,
match xy with inl x => Some x | _ => None end.
Instance maybe_inr {A B} : Maybe (@inr A B) := λ xy,
Global Instance maybe_inr {A B} : Maybe (@inr A B) := λ xy,
match xy with inr y => Some y | _ => None end.
Instance maybe_Some {A} : Maybe (@Some A) := id.
Arguments maybe_Some _ !_ / : assert.
Global Instance maybe_Some {A} : Maybe (@Some A) := id.
Global Arguments maybe_Some _ !_ / : assert.
(** * Union, intersection and difference *)
Instance option_union_with {A} : UnionWith A (option A) := λ f mx my,
Global Instance option_union_with {A} : UnionWith A (option A) := λ f mx my,
match mx, my with
| Some x, Some y => f x y
| Some x, None => Some x
| None, Some y => Some y
| None, None => None
end.
Instance option_intersection_with {A} : IntersectionWith A (option A) :=
Global Instance option_intersection_with {A} : IntersectionWith A (option A) :=
λ f mx my, match mx, my with Some x, Some y => f x y | _, _ => None end.
Instance option_difference_with {A} : DifferenceWith A (option A) := λ f mx my,
Global Instance option_difference_with {A} : DifferenceWith A (option A) := λ f mx my,
match mx, my with
| Some x, Some y => f x y
| Some x, None => Some x
| None, _ => None
end.
Instance option_union {A} : Union (option A) := union_with (λ x _, Some x).
Global Instance option_union {A} : Union (option A) := union_with (λ x _, Some x).
Lemma union_Some {A} (mx my : option A) z :
mx my = Some z mx = Some z (mx = None my = Some z).
Proof. destruct mx, my; naive_solver. Qed.
Lemma union_Some_l {A} x (my : option A) :
Some x my = Some x.
Proof. destruct my; done. Qed.
Lemma union_Some_r {A} (mx : option A) y :
mx Some y = Some (default y mx).
Proof. destruct mx; done. Qed.
Lemma union_None {A} (mx my : option A) :
mx my = None mx = None my = None.
Proof. destruct mx, my; naive_solver. Qed.
Lemma union_is_Some {A} (mx my : option A) :
is_Some (mx my) is_Some mx is_Some my.
Proof. destruct mx, my; naive_solver. Qed.
Lemma option_union_Some {A} (mx my : option A) z :
mx my = Some z mx = Some z my = Some z.
Global Instance option_union_left_id {A} : LeftId (=@{option A}) None union.
Proof. by intros [?|]. Qed.
Global Instance option_union_right_id {A} : RightId (=@{option A}) None union.
Proof. by intros [?|]. Qed.
Global Instance option_intersection {A} : Intersection (option A) :=
intersection_with (λ x _, Some x).
Lemma intersection_Some {A} (mx my : option A) x :
mx my = Some x mx = Some x is_Some my.
Proof. destruct mx, my; unfold is_Some; naive_solver. Qed.
Lemma intersection_is_Some {A} (mx my : option A) :
is_Some (mx my) is_Some mx is_Some my.
Proof. destruct mx, my; unfold is_Some; naive_solver. Qed.
Lemma intersection_Some_r {A} (mx : option A) (y : A) :
mx Some y = mx.
Proof. by destruct mx. Qed.
Lemma intersection_None {A} (mx my : option A) :
mx my = None mx = None my = None.
Proof. destruct mx, my; naive_solver. Qed.
Lemma intersection_None_l {A} (my : option A) :
None my = None.
Proof. destruct my; done. Qed.
Lemma intersection_None_r {A} (mx : option A) :
mx None = None.
Proof. destruct mx; done. Qed.
Global Instance option_intersection_right_absorb {A} :
RightAbsorb (=@{option A}) None intersection.
Proof. by intros [?|]. Qed.
Class DiagNone {A B C} (f : option A option B option C) :=
diag_none : f None None = None.
Global Instance option_intersection_left_absorb {A} :
LeftAbsorb (=@{option A}) None intersection.
Proof. by intros [?|]. Qed.
Section union_intersection_difference.
Context {A} (f : A A option A).
Global Instance union_with_diag_none : DiagNone (union_with f).
Proof. reflexivity. Qed.
Global Instance intersection_with_diag_none : DiagNone (intersection_with f).
Proof. reflexivity. Qed.
Global Instance difference_with_diag_none : DiagNone (difference_with f).
Proof. reflexivity. Qed.
Global Instance union_with_left_id : LeftId (=) None (union_with f).
Proof. by intros [?|]. Qed.
Global Instance union_with_right_id : RightId (=) None (union_with f).
......@@ -309,46 +370,73 @@ Section union_intersection_difference.
Global Instance union_with_comm :
Comm (=) f Comm (=@{option A}) (union_with f).
Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
(** These are duplicates of the above [LeftId]/[RightId] instances, but easier to
find with [SearchAbout]. *)
Lemma union_with_None_l my : union_with f None my = my.
Proof. destruct my; done. Qed.
Lemma union_with_None_r mx : union_with f mx None = mx.
Proof. destruct mx; done. Qed.
Global Instance intersection_with_left_ab : LeftAbsorb (=) None (intersection_with f).
Proof. by intros [?|]. Qed.
Global Instance intersection_with_right_ab : RightAbsorb (=) None (intersection_with f).
Proof. by intros [?|]. Qed.
Global Instance intersection_with_comm :
Comm (=) f Comm (=@{option A}) (intersection_with f).
Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
(** These are duplicates of the above [LeftAbsorb]/[RightAbsorb] instances, but
easier to find with [SearchAbout]. *)
Lemma intersection_with_None_l my : intersection_with f None my = None.
Proof. destruct my; done. Qed.
Lemma intersection_with_None_r mx : intersection_with f mx None = None.
Proof. destruct mx; done. Qed.
Global Instance difference_with_comm :
Comm (=) f Comm (=@{option A}) (intersection_with f).
Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
Global Instance difference_with_right_id : RightId (=) None (difference_with f).
Proof. by intros [?|]. Qed.
End union_intersection_difference.
(** * Tactics *)
Tactic Notation "case_option_guard" "as" ident(Hx) :=
match goal with
| H : context C [@mguard option _ ?P ?dec] |- _ =>
change (@mguard option _ P dec) with (λ A (f : P option A),
match @decide P dec with left H' => f H' | _ => None end) in *;
destruct_decide (@decide P dec) as Hx
| |- context C [@mguard option _ ?P ?dec] =>
change (@mguard option _ P dec) with (λ A (f : P option A),
match @decide P dec with left H' => f H' | _ => None end) in *;
destruct_decide (@decide P dec) as Hx
end.
Tactic Notation "case_option_guard" :=
let H := fresh in case_option_guard as H.
Global Instance union_with_proper `{Equiv A} :
Proper ((() ==> () ==> ()) ==> (≡@{option A}) ==> () ==> ()) union_with.
Proof. intros ?? Hf; do 2 destruct 1; try constructor; by try apply Hf. Qed.
Global Instance intersection_with_proper `{Equiv A} :
Proper ((() ==> () ==> ()) ==> (≡@{option A}) ==> () ==> ()) intersection_with.
Proof. intros ?? Hf; do 2 destruct 1; try constructor; by try apply Hf. Qed.
Global Instance difference_with_proper `{Equiv A} :
Proper ((() ==> () ==> ()) ==> (≡@{option A}) ==> () ==> ()) difference_with.
Proof. intros ?? Hf; do 2 destruct 1; try constructor; by try apply Hf. Qed.
Global Instance union_proper `{Equiv A} :
Proper ((≡@{option A}) ==> () ==> ()) union.
Proof. apply union_with_proper. by constructor. Qed.
End union_intersection_difference.
(** This lemma includes a bind, to avoid equalities of proofs. We cannot have
[guard P = Some p ↔ P] unless [P] is proof irrelant. The best (but less usable)
self-contained alternative would be [guard P = Some p ↔ decide P = left p]. *)
Lemma option_guard_True {A} P `{Decision P} (mx : option A) :
P (guard P; mx) = mx.
Proof. intros. by case_option_guard. Qed.
Lemma option_guard_False {A} P `{Decision P} (mx : option A) :
¬P (guard P; mx) = None.
Proof. intros. by case_option_guard. Qed.
P (guard P;; mx) = mx.
Proof. intros. by case_guard. Qed.
Lemma option_guard_True_pi P `{Decision P, ProofIrrel P} (HP : P) :
guard P = Some HP.
Proof. case_guard; [|done]. f_equal; apply proof_irrel. Qed.
Lemma option_guard_False P `{Decision P} :
¬P guard P = None.
Proof. intros. by case_guard. Qed.
Lemma option_guard_iff {A} P Q `{Decision P, Decision Q} (mx : option A) :
(P Q) (guard P; mx) = guard Q; mx.
Proof. intros [??]. repeat case_option_guard; intuition. Qed.
(P Q) (guard P;; mx) = (guard Q;; mx).
Proof. intros [??]. repeat case_guard; intuition. Qed.
Lemma option_guard_decide {A} P `{Decision P} (mx : option A) :
(guard P;; mx) = if decide P then mx else None.
Proof. by case_guard. Qed.
Lemma option_guard_bool_decide {A} P `{Decision P} (mx : option A) :
(guard P;; mx) = if bool_decide P then mx else None.
Proof. by rewrite option_guard_decide, decide_bool_decide. Qed.
Tactic Notation "simpl_option" "by" tactic3(tac) :=
let assert_Some_None A mx H := first
[ let x := fresh in evar (x:A); let x' := eval unfold x in x in clear x;
assert (mx = Some x') as H by tac
[ let x := mk_evar A in
assert (mx = Some x) as H by tac
| assert (mx = None) as H by tac ]
in repeat match goal with
| H : context [@mret _ _ ?A] |- _ =>
......@@ -378,8 +466,8 @@ Tactic Notation "simpl_option" "by" tactic3(tac) :=
end
| H : context [decide _] |- _ => rewrite decide_True in H by tac
| H : context [decide _] |- _ => rewrite decide_False in H by tac
| H : context [mguard _ _] |- _ => rewrite option_guard_False in H by tac
| H : context [mguard _ _] |- _ => rewrite option_guard_True in H by tac
| H : context [guard _] |- _ => rewrite option_guard_False in H by tac
| H : context [guard _] |- _ => rewrite option_guard_True in H by tac
| _ => rewrite decide_True by tac
| _ => rewrite decide_False by tac
| _ => rewrite option_guard_True by tac
......@@ -397,7 +485,7 @@ Tactic Notation "simplify_option_eq" "by" tactic3(tac) :=
| _ : maybe2 _ ?x = Some _ |- _ => is_var x; destruct x
| _ : maybe3 _ ?x = Some _ |- _ => is_var x; destruct x
| _ : maybe4 _ ?x = Some _ |- _ => is_var x; destruct x
| H : _ _ = Some _ |- _ => apply option_union_Some in H; destruct H
| H : _ _ = Some _ |- _ => apply union_Some in H; destruct H
| H : mbind (M:=option) ?f ?mx = ?my |- _ =>
match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
match my with Some _ => idtac | None => idtac | _ => fail 1 end;
......@@ -419,6 +507,6 @@ Tactic Notation "simplify_option_eq" "by" tactic3(tac) :=
let x := fresh in destruct mx as [x|] eqn:?;
[change (my = Some (f x)) in H|change (my = None) in H]
| _ => progress case_decide
| _ => progress case_option_guard
| _ => progress case_guard
end.
Tactic Notation "simplify_option_eq" := simplify_option_eq by eauto.
(** Coq configuration for std++ (not meant to leak to clients) *)
(** Coq configuration for std++ (not meant to leak to clients).
If you are a user of std++, note that importing this file means
you are implicitly opting-in to every new option we will add here
in the future. We are *not* guaranteeing any kind of stability here.
Instead our advice is for you to have your own options file; then
you can re-export the std++ file there but if we ever add an option
you disagree with you can easily overwrite it in one central location. *)
(* Everything here should be [Export Set], which means when this
file is *imported*, the option will only apply on the import site
but not transitively. *)
Export Set Default Proof Using "Type".
(** Allow async proof-checking of sections. *)
#[export] Set Default Proof Using "Type".
(* FIXME: cannot enable this yet as some files disable 'Default Proof Using'.
Export Set Suggest Proof Using. *)
(* FIXME: cannot enable this on Coq 8.8.
Export Set Default Goal Selector "!". *)
#[export] Set Suggest Proof Using. *)
(** Enforces that every tactic is executed with a single focused goal, meaning
that bullets and curly braces must be used to structure the proof. *)
#[export] Set Default Goal Selector "!".
(* "Fake" import to whitelist this file for the check that ensures we import
this file everywhere.
......
......@@ -13,7 +13,7 @@ Section orders.
Lemma reflexive_eq `{!Reflexive R} X Y : X = Y X Y.
Proof. by intros <-. Qed.
Lemma anti_symm_iff `{!PartialOrder R} X Y : X = Y R X Y R Y X.
Proof. split; [by intros ->|]. by intros [??]; apply (anti_symm _). Qed.
Proof. split; [by intros ->|]. by intros [??]; apply (anti_symm R). Qed.
Lemma strict_spec X Y : X Y X Y Y X.
Proof. done. Qed.
Lemma strict_include X Y : X Y X Y.
......
(** This files implements an efficient implementation of finite maps whose keys
range over Coq's data type of positive binary naturals [positive]. The
data structure is based on the "canonical" binary tries representation by Appel
and Leroy, https://hal.inria.fr/hal-03372247. It has various good properties:
- It guarantees logarithmic-time [lookup] and [partial_alter], and linear-time
[merge]. It has a low constant factor for computation in Coq compared to other
versions (see the Appel and Leroy paper for benchmarks).
- It satisfies extensional equality, i.e., [(∀ i, m1 !! i = m2 !! i) → m1 = m2].
- It can be used in nested recursive definitions, e.g.,
[Inductive test := Test : Pmap test → test]. This is possible because we do
_not_ use a Sigma type to ensure canonical representations (a Sigma type would
break Coq's strict positivity check). *)
From stdpp Require Export countable fin_maps fin_map_dom.
From stdpp Require Import mapset.
From stdpp Require Import options.
Local Open Scope positive_scope.
(** * The trie data structure *)
(** To obtain canonical representations, we need to make sure that the "empty"
trie is represented uniquely. That is, each node should either have a value, a
non-empty left subtrie, or a non-empty right subtrie. The [Pmap_ne] type
enumerates all ways of constructing non-empty canonical trie. *)
Inductive Pmap_ne (A : Type) :=
| PNode001 : Pmap_ne A Pmap_ne A
| PNode010 : A Pmap_ne A
| PNode011 : A Pmap_ne A Pmap_ne A
| PNode100 : Pmap_ne A Pmap_ne A
| PNode101 : Pmap_ne A Pmap_ne A Pmap_ne A
| PNode110 : Pmap_ne A A Pmap_ne A
| PNode111 : Pmap_ne A A Pmap_ne A Pmap_ne A.
Global Arguments PNode001 {A} _ : assert.
Global Arguments PNode010 {A} _ : assert.
Global Arguments PNode011 {A} _ _ : assert.
Global Arguments PNode100 {A} _ : assert.
Global Arguments PNode101 {A} _ _ : assert.
Global Arguments PNode110 {A} _ _ : assert.
Global Arguments PNode111 {A} _ _ _ : assert.
(** Using [Variant] we suppress the generation of the induction scheme. We use
the induction scheme [Pmap_ind] in terms of the smart constructors to reduce the
number of cases, similar to Appel and Leroy. *)
Variant Pmap (A : Type) := PEmpty : Pmap A | PNodes : Pmap_ne A Pmap A.
Global Arguments PEmpty {A}.
Global Arguments PNodes {A} _.
Global Instance Pmap_ne_eq_dec `{EqDecision A} : EqDecision (Pmap_ne A).
Proof. solve_decision. Defined.
Global Instance Pmap_eq_dec `{EqDecision A} : EqDecision (Pmap A).
Proof. solve_decision. Defined.
(** The smart constructor [PNode] and eliminator [Pmap_ne_case] are used to
reduce the number of cases, similar to Appel and Leroy. *)
Local Definition PNode {A} (ml : Pmap A) (mx : option A) (mr : Pmap A) : Pmap A :=
match ml, mx, mr with
| PEmpty, None, PEmpty => PEmpty
| PEmpty, None, PNodes r => PNodes (PNode001 r)
| PEmpty, Some x, PEmpty => PNodes (PNode010 x)
| PEmpty, Some x, PNodes r => PNodes (PNode011 x r)
| PNodes l, None, PEmpty => PNodes (PNode100 l)
| PNodes l, None, PNodes r => PNodes (PNode101 l r)
| PNodes l, Some x, PEmpty => PNodes (PNode110 l x)
| PNodes l, Some x, PNodes r => PNodes (PNode111 l x r)
end.
Local Definition Pmap_ne_case {A B} (t : Pmap_ne A)
(f : Pmap A option A Pmap A B) : B :=
match t with
| PNode001 r => f PEmpty None (PNodes r)
| PNode010 x => f PEmpty (Some x) PEmpty
| PNode011 x r => f PEmpty (Some x) (PNodes r)
| PNode100 l => f (PNodes l) None PEmpty
| PNode101 l r => f (PNodes l) None (PNodes r)
| PNode110 l x => f (PNodes l) (Some x) PEmpty
| PNode111 l x r => f (PNodes l) (Some x) (PNodes r)
end.
(** Operations *)
Global Instance Pmap_ne_lookup {A} : Lookup positive A (Pmap_ne A) :=
fix go i t {struct t} :=
let _ : Lookup _ _ _ := @go in
match t, i with
| (PNode010 x | PNode011 x _ | PNode110 _ x | PNode111 _ x _), 1 => Some x
| (PNode100 l | PNode110 l _ | PNode101 l _ | PNode111 l _ _), i~0 => l !! i
| (PNode001 r | PNode011 _ r | PNode101 _ r | PNode111 _ _ r), i~1 => r !! i
| _, _ => None
end.
Global Instance Pmap_lookup {A} : Lookup positive A (Pmap A) := λ i mt,
match mt with PEmpty => None | PNodes t => t !! i end.
Local Arguments lookup _ _ _ _ _ !_ / : simpl nomatch, assert.
Global Instance Pmap_empty {A} : Empty (Pmap A) := PEmpty.
(** Block reduction, even on concrete [Pmap]s.
Marking [Pmap_empty] as [simpl never] would not be enough, because of
https://github.com/coq/coq/issues/2972 and
https://github.com/coq/coq/issues/2986.
And marking [Pmap] consumers as [simpl never] does not work either, see:
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/171#note_53216 *)
Global Opaque Pmap_empty.
Local Fixpoint Pmap_ne_singleton {A} (i : positive) (x : A) : Pmap_ne A :=
match i with
| 1 => PNode010 x
| i~0 => PNode100 (Pmap_ne_singleton i x)
| i~1 => PNode001 (Pmap_ne_singleton i x)
end.
Local Definition Pmap_partial_alter_aux {A} (go : positive Pmap_ne A Pmap A)
(f : option A option A) (i : positive) (mt : Pmap A) : Pmap A :=
match mt with
| PEmpty =>
match f None with
| None => PEmpty | Some x => PNodes (Pmap_ne_singleton i x)
end
| PNodes t => go i t
end.
Local Definition Pmap_ne_partial_alter {A} (f : option A option A) :
positive Pmap_ne A Pmap A :=
fix go i t {struct t} :=
Pmap_ne_case t $ λ ml mx mr,
match i with
| 1 => PNode ml (f mx) mr
| i~0 => PNode (Pmap_partial_alter_aux go f i ml) mx mr
| i~1 => PNode ml mx (Pmap_partial_alter_aux go f i mr)
end.
Global Instance Pmap_partial_alter {A} : PartialAlter positive A (Pmap A) := λ f,
Pmap_partial_alter_aux (Pmap_ne_partial_alter f) f.
Local Definition Pmap_ne_fmap {A B} (f : A B) : Pmap_ne A Pmap_ne B :=
fix go t :=
match t with
| PNode001 r => PNode001 (go r)
| PNode010 x => PNode010 (f x)
| PNode011 x r => PNode011 (f x) (go r)
| PNode100 l => PNode100 (go l)
| PNode101 l r => PNode101 (go l) (go r)
| PNode110 l x => PNode110 (go l) (f x)
| PNode111 l x r => PNode111 (go l) (f x) (go r)
end.
Global Instance Pmap_fmap : FMap Pmap := λ {A B} f mt,
match mt with PEmpty => PEmpty | PNodes t => PNodes (Pmap_ne_fmap f t) end.
Local Definition Pmap_omap_aux {A B} (go : Pmap_ne A Pmap B) (tm : Pmap A) : Pmap B :=
match tm with PEmpty => PEmpty | PNodes t' => go t' end.
Local Definition Pmap_ne_omap {A B} (f : A option B) : Pmap_ne A Pmap B :=
fix go t :=
Pmap_ne_case t $ λ ml mx mr,
PNode (Pmap_omap_aux go ml) (mx ≫= f) (Pmap_omap_aux go mr).
Global Instance Pmap_omap : OMap Pmap := λ {A B} f,
Pmap_omap_aux (Pmap_ne_omap f).
Local Definition Pmap_merge_aux {A B C} (go : Pmap_ne A Pmap_ne B Pmap C)
(f : option A option B option C) (mt1 : Pmap A) (mt2 : Pmap B) : Pmap C :=
match mt1, mt2 with
| PEmpty, PEmpty => PEmpty
| PNodes t1', PEmpty => Pmap_ne_omap (λ x, f (Some x) None) t1'
| PEmpty, PNodes t2' => Pmap_ne_omap (λ x, f None (Some x)) t2'
| PNodes t1', PNodes t2' => go t1' t2'
end.
Local Definition Pmap_ne_merge {A B C} (f : option A option B option C) :
Pmap_ne A Pmap_ne B Pmap C :=
fix go t1 t2 {struct t1} :=
Pmap_ne_case t1 $ λ ml1 mx1 mr1,
Pmap_ne_case t2 $ λ ml2 mx2 mr2,
PNode (Pmap_merge_aux go f ml1 ml2) (diag_None f mx1 mx2)
(Pmap_merge_aux go f mr1 mr2).
Global Instance Pmap_merge : Merge Pmap := λ {A B C} f,
Pmap_merge_aux (Pmap_ne_merge f) f.
Local Definition Pmap_fold_aux {A B} (go : positive B Pmap_ne A B)
(i : positive) (y : B) (mt : Pmap A) : B :=
match mt with PEmpty => y | PNodes t => go i y t end.
Local Definition Pmap_ne_fold {A B} (f : positive A B B) :
positive B Pmap_ne A B :=
fix go i y t :=
Pmap_ne_case t $ λ ml mx mr,
Pmap_fold_aux go i~1
(Pmap_fold_aux go i~0
match mx with None => y | Some x => f (Pos.reverse i) x y end ml) mr.
Global Instance Pmap_fold {A} : MapFold positive A (Pmap A) := λ {B} f,
Pmap_fold_aux (Pmap_ne_fold f) 1.
(** Proofs *)
Local Definition PNode_valid {A} (ml : Pmap A) (mx : option A) (mr : Pmap A) :=
match ml, mx, mr with PEmpty, None, PEmpty => False | _, _, _ => True end.
Local Lemma Pmap_ind {A} (P : Pmap A Prop) :
P PEmpty
( ml mx mr, PNode_valid ml mx mr P ml P mr P (PNode ml mx mr))
mt, P mt.
Proof.
intros Hemp Hnode [|t]; [done|]. induction t.
- by apply (Hnode PEmpty None (PNodes _)).
- by apply (Hnode PEmpty (Some _) PEmpty).
- by apply (Hnode PEmpty (Some _) (PNodes _)).
- by apply (Hnode (PNodes _) None PEmpty).
- by apply (Hnode (PNodes _) None (PNodes _)).
- by apply (Hnode (PNodes _) (Some _) PEmpty).
- by apply (Hnode (PNodes _) (Some _) (PNodes _)).
Qed.
Local Lemma Pmap_lookup_PNode {A} (ml mr : Pmap A) mx i :
PNode ml mx mr !! i = match i with 1 => mx | i~0 => ml !! i | i~1 => mr !! i end.
Proof. by destruct ml, mx, mr, i. Qed.
Local Lemma Pmap_ne_lookup_not_None {A} (t : Pmap_ne A) : i, t !! i None.
Proof.
induction t; repeat select ( _, _) (fun H => destruct H);
try first [by eexists 1|by eexists _~0|by eexists _~1].
Qed.
Local Lemma Pmap_eq_empty {A} (mt : Pmap A) : ( i, mt !! i = None) mt = ∅.
Proof.
intros Hlookup. destruct mt as [|t]; [done|].
destruct (Pmap_ne_lookup_not_None t); naive_solver.
Qed.
Local Lemma Pmap_eq {A} (mt1 mt2 : Pmap A) : ( i, mt1 !! i = mt2 !! i) mt1 = mt2.
Proof.
revert mt2. induction mt1 as [|ml1 mx1 mr1 _ IHl IHr] using Pmap_ind;
intros mt2 Hlookup; destruct mt2 as [|ml2 mx2 mr2 _ _ _] using Pmap_ind.
- done.
- symmetry. apply Pmap_eq_empty. naive_solver.
- apply Pmap_eq_empty. naive_solver.
- f_equal.
+ apply IHl. intros i. generalize (Hlookup (i~0)).
by rewrite !Pmap_lookup_PNode.
+ generalize (Hlookup 1). by rewrite !Pmap_lookup_PNode.
+ apply IHr. intros i. generalize (Hlookup (i~1)).
by rewrite !Pmap_lookup_PNode.
Qed.
Local Lemma Pmap_ne_lookup_singleton {A} i (x : A) :
Pmap_ne_singleton i x !! i = Some x.
Proof. by induction i. Qed.
Local Lemma Pmap_ne_lookup_singleton_ne {A} i j (x : A) :
i j Pmap_ne_singleton i x !! j = None.
Proof. revert j. induction i; intros [?|?|]; naive_solver. Qed.
Local Lemma Pmap_partial_alter_PNode {A} (f : option A option A) i ml mx mr :
PNode_valid ml mx mr
partial_alter f i (PNode ml mx mr) =
match i with
| 1 => PNode ml (f mx) mr
| i~0 => PNode (partial_alter f i ml) mx mr
| i~1 => PNode ml mx (partial_alter f i mr)
end.
Proof. by destruct ml, mx, mr. Qed.
Local Lemma Pmap_lookup_partial_alter {A} (f : option A option A)
(mt : Pmap A) i :
partial_alter f i mt !! i = f (mt !! i).
Proof.
revert i. induction mt using Pmap_ind.
{ intros i. unfold partial_alter; simpl. destruct (f None); simpl; [|done].
by rewrite Pmap_ne_lookup_singleton. }
intros []; by rewrite Pmap_partial_alter_PNode, !Pmap_lookup_PNode by done.
Qed.
Local Lemma Pmap_lookup_partial_alter_ne {A} (f : option A option A)
(mt : Pmap A) i j :
i j partial_alter f i mt !! j = mt !! j.
Proof.
revert i j; induction mt using Pmap_ind.
{ intros i j ?; unfold partial_alter; simpl. destruct (f None); simpl; [|done].
by rewrite Pmap_ne_lookup_singleton_ne. }
intros [] [] ?;
rewrite Pmap_partial_alter_PNode, !Pmap_lookup_PNode by done; auto with lia.
Qed.
Local Lemma Pmap_lookup_fmap {A B} (f : A B) (mt : Pmap A) i :
(f <$> mt) !! i = f <$> mt !! i.
Proof.
destruct mt as [|t]; simpl; [done|].
revert i. induction t; intros []; by simpl.
Qed.
Local Lemma Pmap_omap_PNode {A B} (f : A option B) ml mx mr :
PNode_valid ml mx mr
omap f (PNode ml mx mr) = PNode (omap f ml) (mx ≫= f) (omap f mr).
Proof. by destruct ml, mx, mr. Qed.
Local Lemma Pmap_lookup_omap {A B} (f : A option B) (mt : Pmap A) i :
omap f mt !! i = mt !! i ≫= f.
Proof.
revert i. induction mt using Pmap_ind; [done|].
intros []; by rewrite Pmap_omap_PNode, !Pmap_lookup_PNode by done.
Qed.
Section Pmap_merge.
Context {A B C} (f : option A option B option C).
Local Lemma Pmap_merge_PNode_PEmpty ml mx mr :
PNode_valid ml mx mr
merge f (PNode ml mx mr) =
PNode (omap (λ x, f (Some x) None) ml) (diag_None f mx None)
(omap (λ x, f (Some x) None) mr).
Proof. by destruct ml, mx, mr. Qed.
Local Lemma Pmap_merge_PEmpty_PNode ml mx mr :
PNode_valid ml mx mr
merge f (PNode ml mx mr) =
PNode (omap (λ x, f None (Some x)) ml) (diag_None f None mx)
(omap (λ x, f None (Some x)) mr).
Proof. by destruct ml, mx, mr. Qed.
Local Lemma Pmap_merge_PNode_PNode ml1 ml2 mx1 mx2 mr1 mr2 :
PNode_valid ml1 mx1 mr1 PNode_valid ml2 mx2 mr2
merge f (PNode ml1 mx1 mr1) (PNode ml2 mx2 mr2) =
PNode (merge f ml1 ml2) (diag_None f mx1 mx2) (merge f mr1 mr2).
Proof. by destruct ml1, mx1, mr1, ml2, mx2, mr2. Qed.
Local Lemma Pmap_lookup_merge (mt1 : Pmap A) (mt2 : Pmap B) i :
merge f mt1 mt2 !! i = diag_None f (mt1 !! i) (mt2 !! i).
Proof.
revert mt2 i; induction mt1 using Pmap_ind; intros mt2 i.
{ induction mt2 using Pmap_ind; [done|].
rewrite Pmap_merge_PEmpty_PNode, Pmap_lookup_PNode by done.
destruct i; rewrite ?Pmap_lookup_omap, Pmap_lookup_PNode; simpl;
by repeat destruct (_ !! _). }
destruct mt2 using Pmap_ind.
{ rewrite Pmap_merge_PNode_PEmpty, Pmap_lookup_PNode by done.
destruct i; rewrite ?Pmap_lookup_omap, Pmap_lookup_PNode; simpl;
by repeat destruct (_ !! _). }
rewrite Pmap_merge_PNode_PNode by done.
destruct i; by rewrite ?Pmap_lookup_PNode.
Qed.
End Pmap_merge.
Section Pmap_fold.
Local Notation Pmap_fold f := (Pmap_fold_aux (Pmap_ne_fold f)).
Local Lemma Pmap_fold_PNode {A B} (f : positive A B B) i y ml mx mr :
Pmap_fold f i y (PNode ml mx mr) = Pmap_fold f i~1
(Pmap_fold f i~0
match mx with None => y | Some x => f (Pos.reverse i) x y end ml) mr.
Proof. by destruct ml, mx, mr. Qed.
Local Lemma Pmap_fold_ind {A} (P : Pmap A Prop) :
P PEmpty
( i x mt,
mt !! i = None
( j A' B (f : positive A' B B) (g : A A') b x',
Pmap_fold f j b (<[i:=x']> (g <$> mt))
= f (Pos.reverse_go i j) x' (Pmap_fold f j b (g <$> mt)))
P mt P (<[i:=x]> mt))
mt, P mt.
Proof.
intros Hemp Hinsert mt. revert P Hemp Hinsert.
induction mt as [|ml mx mr ? IHl IHr] using Pmap_ind;
intros P Hemp Hinsert; [done|].
apply (IHr (λ mt, P (PNode ml mx mt))).
{ apply (IHl (λ mt, P (PNode mt mx PEmpty))).
{ destruct mx as [x|]; [|done].
replace (PNode PEmpty (Some x) PEmpty)
with (<[1:=x]> PEmpty : Pmap A) by done.
by apply Hinsert. }
intros i x mt ? Hfold ?.
replace (PNode (<[i:=x]> mt) mx PEmpty)
with (<[i~0:=x]> (PNode mt mx PEmpty)) by (by destruct mt, mx).
apply Hinsert.
- by rewrite Pmap_lookup_PNode.
- intros j A' B f g b x'.
replace (<[i~0:=x']> (g <$> PNode mt mx PEmpty))
with (PNode (<[i:=x']> (g <$> mt)) (g <$> mx) PEmpty)
by (by destruct mt, mx).
replace (g <$> PNode mt mx PEmpty)
with (PNode (g <$> mt) (g <$> mx) PEmpty) by (by destruct mt, mx).
rewrite !Pmap_fold_PNode; simpl; auto.
- done. }
intros i x mt r ? Hfold.
replace (PNode ml mx (<[i:=x]> mt))
with (<[i~1:=x]> (PNode ml mx mt)) by (by destruct ml, mx, mt).
apply Hinsert.
- by rewrite Pmap_lookup_PNode.
- intros j A' B f g b x'.
replace (<[i~1:=x']> (g <$> PNode ml mx mt))
with (PNode (g <$> ml) (g <$> mx) (<[i:=x']> (g <$> mt)))
by (by destruct ml, mx, mt).
replace (g <$> PNode ml mx mt)
with (PNode (g <$> ml) (g <$> mx) (g <$> mt)) by (by destruct ml, mx, mt).
rewrite !Pmap_fold_PNode; simpl; auto.
- done.
Qed.
End Pmap_fold.
(** Instance of the finite map type class *)
Global Instance Pmap_finmap : FinMap positive Pmap.
Proof.
split.
- intros. by apply Pmap_eq.
- done.
- intros. apply Pmap_lookup_partial_alter.
- intros. by apply Pmap_lookup_partial_alter_ne.
- intros. apply Pmap_lookup_fmap.
- intros. apply Pmap_lookup_omap.
- intros. apply Pmap_lookup_merge.
- done.
- intros A P Hemp Hinsert. apply Pmap_fold_ind; [done|].
intros i x mt ? Hfold. apply Hinsert; [done|]. apply (Hfold 1).
Qed.
(** Type annotation [list (positive * A)] seems needed in Coq 8.14, not in more
recent versions. *)
Global Program Instance Pmap_countable `{Countable A} : Countable (Pmap A) := {
encode m := encode (map_to_list m : list (positive * A));
decode p := list_to_map <$> decode p
}.
Next Obligation.
intros A ?? m; simpl. rewrite decode_encode; simpl. by rewrite list_to_map_to_list.
Qed.
(** * Finite sets *)
(** We construct sets of [positives]s satisfying extensional equality. *)
Notation Pset := (mapset Pmap).
Global Instance Pmap_dom {A} : Dom (Pmap A) Pset := mapset_dom.
Global Instance Pmap_dom_spec : FinMapDom positive Pmap Pset := mapset_dom_spec.
File moved
......@@ -4,11 +4,17 @@ From Coq Require Import Ascii.
From stdpp Require Import options.
Class Pretty A := pretty : A string.
Global Hint Mode Pretty ! : typeclass_instances.
Definition pretty_N_char (x : N) : ascii :=
match x with
| 0 => "0" | 1 => "1" | 2 => "2" | 3 => "3" | 4 => "4"
| 5 => "5" | 6 => "6" | 7 => "7" | 8 => "8" | _ => "9"
end%char%N.
Lemma pretty_N_char_inj x y :
(x < 10)%N (y < 10)%N pretty_N_char x = pretty_N_char y x = y.
Proof. compute; intros. by repeat (discriminate || case_match). Qed.
Fixpoint pretty_N_go_help (x : N) (acc : Acc (<)%N x) (s : string) : string :=
match decide (0 < x)%N with
| left H => pretty_N_go_help (x `div` 10)%N
......@@ -16,8 +22,14 @@ Fixpoint pretty_N_go_help (x : N) (acc : Acc (<)%N x) (s : string) : string :=
(String (pretty_N_char (x `mod` 10)) s)
| right _ => s
end.
(** The argument [S (N.size_nat x)] of [wf_guard] makes sure that computation
works if [x] is a closed term, but that it blocks if [x] is an open term. The
latter prevents unexpected stack overflows, see [tests/pretty.v]. *)
Definition pretty_N_go (x : N) : string string :=
pretty_N_go_help x (wf_guard 32 N.lt_wf_0 x).
pretty_N_go_help x (wf_guard (S (N.size_nat x)) N.lt_wf_0 x).
Global Instance pretty_N : Pretty N := λ x,
if decide (x = 0)%N then "0" else pretty_N_go x "".
Lemma pretty_N_go_0 s : pretty_N_go 0 s = s.
Proof. done. Qed.
Lemma pretty_N_go_help_irrel x acc1 acc2 s :
......@@ -31,22 +43,45 @@ Lemma pretty_N_go_step x s :
= pretty_N_go (x `div` 10) (String (pretty_N_char (x `mod` 10)) s).
Proof.
unfold pretty_N_go; intros; destruct (wf_guard 32 N.lt_wf_0 x).
destruct wf_guard. (* this makes coqchk happy. *)
destruct (wf_guard _ _). (* this makes coqchk happy. *)
unfold pretty_N_go_help at 1; fold pretty_N_go_help.
by destruct (decide (0 < x)%N); auto using pretty_N_go_help_irrel.
Qed.
Instance pretty_N : Pretty N := λ x, pretty_N_go x ""%string.
Lemma pretty_N_unfold x : pretty x = pretty_N_go x "".
Proof. done. Qed.
Instance pretty_N_inj : Inj (=@{N}) (=) pretty.
(** Helper lemma to prove [pretty_N_inj] and [pretty_Z_inj]. *)
Lemma pretty_N_go_ne_0 x s : s "0" pretty_N_go x s "0".
Proof.
revert s. induction (N.lt_wf_0 x) as [x _ IH]; intros s ?.
assert (x = 0 0 < x < 10 10 x)%N as [->|[[??]|?]] by lia.
- by rewrite pretty_N_go_0.
- rewrite pretty_N_go_step by done. apply IH.
{ by apply N.div_lt. }
assert (x = 1 x = 2 x = 3 x = 4 x = 5 x = 6
x = 7 x = 8 x = 9)%N by lia; naive_solver.
- rewrite 2!pretty_N_go_step by (try apply N.div_str_pos_iff; lia).
apply IH; [|done].
trans (x `div` 10)%N; apply N.div_lt; auto using N.div_str_pos with lia.
Qed.
(** Helper lemma to prove [pretty_Z_inj]. *)
Lemma pretty_N_go_ne_dash x s s' : s "-" +:+ s' pretty_N_go x s "-" +:+ s'.
Proof.
revert s. induction (N.lt_wf_0 x) as [x _ IH]; intros s ?.
assert (x = 0 0 < x)%N as [->|?] by lia.
- by rewrite pretty_N_go_0.
- rewrite pretty_N_go_step by done. apply IH.
{ by apply N.div_lt. }
unfold pretty_N_char. by repeat case_match.
Qed.
Global Instance pretty_N_inj : Inj (=@{N}) (=) pretty.
Proof.
assert ( x y, x < 10 y < 10
pretty_N_char x = pretty_N_char y x = y)%N.
{ compute; intros. by repeat (discriminate || case_match). }
cut ( x y s s', pretty_N_go x s = pretty_N_go y s'
String.length s = String.length s' x = y s = s').
{ intros help x y Hp.
eapply (help x y "" ""); [by rewrite <-!pretty_N_unfold|done]. }
{ intros help x y. unfold pretty, pretty_N. intros.
repeat case_decide; simplify_eq/=; [done|..].
- by destruct (pretty_N_go_ne_0 y "").
- by destruct (pretty_N_go_ne_0 x "").
- by apply (help x y "" ""). }
assert ( x s, ¬String.length (pretty_N_go x s) < String.length s) as help.
{ setoid_rewrite <-Nat.le_ngt.
intros x; induction (N.lt_wf_0 x) as [x _ IH]; intros s.
......@@ -57,18 +92,34 @@ Proof.
assert ((x = 0 0 < x) (y = 0 0 < y))%N as [[->|?] [->|?]] by lia;
rewrite ?pretty_N_go_0, ?pretty_N_go_step, ?(pretty_N_go_step y) by done.
{ done. }
{ intros -> Hlen; edestruct help; rewrite Hlen; simpl; lia. }
{ intros <- Hlen; edestruct help; rewrite <-Hlen; simpl; lia. }
intros Hs Hlen; apply IH in Hs; destruct Hs;
simplify_eq/=; split_and?; auto using N.div_lt_upper_bound with lia.
rewrite (N.div_mod x 10), (N.div_mod y 10) by done.
auto using N.mod_lt with f_equal.
{ intros -> Hlen. edestruct help; rewrite Hlen; simpl; lia. }
{ intros <- Hlen. edestruct help; rewrite <-Hlen; simpl; lia. }
intros Hs Hlen.
apply IH in Hs as [? [= Hchar]];
[|auto using N.div_lt_upper_bound with lia|simpl; lia].
split; [|done].
apply pretty_N_char_inj in Hchar; [|by auto using N.mod_lt..].
rewrite (N.div_mod x 10), (N.div_mod y 10) by done. lia.
Qed.
Instance pretty_Z : Pretty Z := λ x,
match x with
| Z0 => "" | Zpos x => pretty (Npos x) | Zneg x => "-" +:+ pretty (Npos x)
end%string.
Instance pretty_nat : Pretty nat := λ x, pretty (N.of_nat x).
Instance pretty_nat_inj : Inj (=@{nat}) (=) pretty.
Global Instance pretty_nat : Pretty nat := λ x, pretty (N.of_nat x).
Global Instance pretty_nat_inj : Inj (=@{nat}) (=) pretty.
Proof. apply _. Qed.
Global Instance pretty_positive : Pretty positive := λ x, pretty (Npos x).
Global Instance pretty_positive_inj : Inj (=@{positive}) (=) pretty.
Proof. apply _. Qed.
Global Instance pretty_Z : Pretty Z := λ x,
match x with
| Z0 => "0" | Zpos x => pretty x | Zneg x => "-" +:+ pretty x
end.
Global Instance pretty_Z_inj : Inj (=@{Z}) (=) pretty.
Proof.
unfold pretty, pretty_Z.
intros [|x|x] [|y|y] Hpretty; simplify_eq/=; try done.
- by destruct (pretty_N_go_ne_0 (N.pos y) "").
- by destruct (pretty_N_go_ne_0 (N.pos x) "").
- by edestruct (pretty_N_go_ne_dash (N.pos x) "").
- by edestruct (pretty_N_go_ne_dash (N.pos y) "").
Qed.
......@@ -2,21 +2,21 @@
From stdpp Require Export base.
From stdpp Require Import options.
Hint Extern 200 (ProofIrrel _) => progress (lazy beta) : typeclass_instances.
Global Hint Extern 200 (ProofIrrel _) => progress (lazy beta) : typeclass_instances.
Instance True_pi: ProofIrrel True.
Global Instance True_pi: ProofIrrel True.
Proof. intros [] []; reflexivity. Qed.
Instance False_pi: ProofIrrel False.
Global Instance False_pi: ProofIrrel False.
Proof. intros []. Qed.
Instance unit_pi: ProofIrrel ().
Global Instance unit_pi: ProofIrrel ().
Proof. intros [] []; reflexivity. Qed.
Instance and_pi (A B : Prop) :
Global Instance and_pi (A B : Prop) :
ProofIrrel A ProofIrrel B ProofIrrel (A B).
Proof. intros ?? [??] [??]. f_equal; trivial. Qed.
Instance prod_pi (A B : Type) :
Global Instance prod_pi (A B : Type) :
ProofIrrel A ProofIrrel B ProofIrrel (A * B).
Proof. intros ?? [??] [??]. f_equal; trivial. Qed.
Instance eq_pi {A} (x : A) `{ z, Decision (x = z)} (y : A) :
Global Instance eq_pi {A} (x : A) `{ z, Decision (x = z)} (y : A) :
ProofIrrel (x = y).
Proof.
set (f z (H : x = z) :=
......@@ -29,7 +29,7 @@ Proof.
intros p q. rewrite <-(help _ p), <-(help _ q).
unfold f at 2 4. destruct (decide _); [reflexivity|]. exfalso; tauto.
Qed.
Instance Is_true_pi (b : bool) : ProofIrrel (Is_true b).
Global Instance Is_true_pi (b : bool) : ProofIrrel (Is_true b).
Proof. destruct b; simpl; apply _. Qed.
Lemma sig_eq_pi `(P : A Prop) `{ x, ProofIrrel (P x)}
(x y : sig P) : x = y `x = `y.
......@@ -38,7 +38,7 @@ Proof.
destruct x as [x Hx], y as [y Hy]; simpl; intros; subst.
f_equal. apply proof_irrel.
Qed.
Instance proj1_sig_inj `(P : A Prop) `{ x, ProofIrrel (P x)} :
Global Instance proj1_sig_inj `(P : A Prop) `{ x, ProofIrrel (P x)} :
Inj (=) (=) (proj1_sig (P:=P)).
Proof. intros ??. apply (sig_eq_pi P). Qed.
Lemma exists_proj1_pi `(P : A Prop) `{ x, ProofIrrel (P x)}
......
......@@ -4,22 +4,28 @@ From stdpp Require Import options.
Record propset (A : Type) : Type := PropSet { propset_car : A Prop }.
Add Printing Constructor propset.
Arguments PropSet {_} _ : assert.
Arguments propset_car {_} _ _ : assert.
Global Arguments PropSet {_} _ : assert.
Global Arguments propset_car {_} _ _ : assert.
(** Here we are using the notation "as pattern" because we want to
be compatible with all the rules that start with [ {[ TERM ] such as
records, singletons, and map singletons. See
https://coq.inria.fr/refman/user-extensions/syntax-extensions.html#binders-bound-in-the-notation-and-parsed-as-terms
and https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/533#note_98003.
We don't set a level to be consistent with the notation for singleton sets. *)
Notation "{[ x | P ]}" := (PropSet (λ x, P))
(at level 1, format "{[ x | P ]}") : stdpp_scope.
(at level 1, x as pattern, format "{[ x | P ]}") : stdpp_scope.
Instance propset_elem_of {A} : ElemOf A (propset A) := λ x X, propset_car X x.
Global Instance propset_elem_of {A} : ElemOf A (propset A) := λ x X, propset_car X x.
Instance propset_top {A} : Top (propset A) := {[ _ | True ]}.
Instance propset_empty {A} : Empty (propset A) := {[ _ | False ]}.
Instance propset_singleton {A} : Singleton A (propset A) := λ y, {[ x | y = x ]}.
Instance propset_union {A} : Union (propset A) := λ X1 X2, {[ x | x X1 x X2 ]}.
Instance propset_intersection {A} : Intersection (propset A) := λ X1 X2,
Global Instance propset_top {A} : Top (propset A) := {[ _ | True ]}.
Global Instance propset_empty {A} : Empty (propset A) := {[ _ | False ]}.
Global Instance propset_singleton {A} : Singleton A (propset A) := λ y, {[ x | y = x ]}.
Global Instance propset_union {A} : Union (propset A) := λ X1 X2, {[ x | x X1 x X2 ]}.
Global Instance propset_intersection {A} : Intersection (propset A) := λ X1 X2,
{[ x | x X1 x X2 ]}.
Instance propset_difference {A} : Difference (propset A) := λ X1 X2,
Global Instance propset_difference {A} : Difference (propset A) := λ X1 X2,
{[ x | x X1 x X2 ]}.
Instance propset_top_set {A} : TopSet A (propset A).
Global Instance propset_top_set {A} : TopSet A (propset A).
Proof. split; [split; [split| |]|]; by repeat intro. Qed.
Lemma elem_of_PropSet {A} (P : A Prop) x : x {[ x | P x ]} P x.
......@@ -33,17 +39,17 @@ Lemma elem_of_set_to_propset `{SemiSet A C} x (X : C) :
x set_to_propset X x X.
Proof. done. Qed.
Instance propset_ret : MRet propset := λ A (x : A), {[ x ]}.
Instance propset_bind : MBind propset := λ A B (f : A propset B) (X : propset A),
Global Instance propset_ret : MRet propset := λ A (x : A), {[ x ]}.
Global Instance propset_bind : MBind propset := λ A B (f : A propset B) (X : propset A),
PropSet (λ b, a, b f a a X).
Instance propset_fmap : FMap propset := λ A B (f : A B) (X : propset A),
Global Instance propset_fmap : FMap propset := λ A B (f : A B) (X : propset A),
{[ b | a, b = f a a X ]}.
Instance propset_join : MJoin propset := λ A (XX : propset (propset A)),
Global Instance propset_join : MJoin propset := λ A (XX : propset (propset A)),
{[ a | X : propset A, a X X XX ]}.
Instance propset_monad_set : MonadSet propset.
Global Instance propset_monad_set : MonadSet propset.
Proof. by split; try apply _. Qed.
Instance set_unfold_PropSet {A} (P : A Prop) x Q :
Global Instance set_unfold_PropSet {A} (P : A Prop) x Q :
SetUnfoldSimpl (P x) Q SetUnfoldElemOf x (PropSet P) Q.
Proof. intros HPQ. constructor. apply HPQ. Qed.
......