- 17 Nov, 2015 1 commit
-
-
Robbert Krebbers authored
-
- 16 Nov, 2015 1 commit
-
-
Robbert Krebbers authored
-
- 03 Feb, 2017 1 commit
-
-
Robbert Krebbers authored
-
- 01 Feb, 2017 1 commit
-
-
Robbert Krebbers authored
The port makes the following notable changes: * The carrier types of separation algebras and integer environments are no longer in Set. Now they have a type at a fixed type level above Set. This both works better in 8.5 and makes the formalization more general. I have tried putting them at polymorphic type levels, but that increased the compilation time by an order of magnitude. * I am using a custom f_equal tactic written in Ltac to circumvent bug #4069. That bug has been fixed, so this custom tactic can be removed when the next beta of 8.5 is out.
-
- 08 Feb, 2015 3 commits
-
-
Robbert Krebbers authored
The tactic "injection' H" now uses the name "H" for the first hypothesis it generates. Fresh names will still be used for the remaining hypotheses.
-
Robbert Krebbers authored
-
Robbert Krebbers authored
Important changes in the core semantics: * Types extended with function types. Since function types are a special kind of pointer types, types now have an additional mutual part called "ptr_type". * Pointers extended with function pointers. Theses are just names that refer to an actual function in the function environment. * Typing environments extended to assign argument and return types to function names. Before we used a separate environment for these, but since the argument and return types are already needed to type function pointers, this environment would appear in pretty much every typing judgment. As a side-effect, the frontend has been rewritten entirely. The important changes are: * Type checking of expressions is more involved: there is a special kind of expression type corresponding to a function designator. * To handle things like block scoped extern function, more state-fullness was needed. To prepare for future extensions, the entire frontend now uses a state monad.
-
- 25 Jan, 2015 1 commit
-
-
Robbert Krebbers authored
-
- 30 Sep, 2014 1 commit
-
-
Robbert Krebbers authored
Now it only performs injection on hypotheses of the shape f .. = f ..
-
- 25 Jun, 2014 1 commit
-
-
Robbert Krebbers authored
-
- 16 Jun, 2014 1 commit
-
-
Robbert Krebbers authored
Major changes: * Make void a base type, and include a proper void base value. This is necessary because expressions (free, functions without return value) can yield a void. We now also allow void casts conforming to the C standard. * Various missing lemmas about typing, weakening, decidability, ... * The operations "free" and "alloc" now operate on l-values instead of r-values. This removes some duplication. * Improve notations of expressions and statements. Change the presence of the operators conforming to the C standard. Small changes: * Use the classes "Typed" and "TypeCheck" for validity of indexes in memory. This gives more uniform notations. * New tactic "typed_inversion" performs inversion on an inductive predicate of type "Typed" and folds the premises. * Remove a horrible hack in the definitions of the classes "FMap", "MBind", "OMap", "Alter" that was used to let "simpl" behave better. Instead, we have defined a tactic "csimpl" that folds the results after performing an ordinary "simpl". * Fast operation to remove duplicates from lists using hashsets. * Make various type constructors (mainly finite map implementations) universe polymorphic by packing them into an inductive. This way, the whole C syntax can live in type, avoiding the need for (slow) universe checks.
-
- 02 May, 2014 2 commits
-
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
- 17 Jun, 2013 1 commit
-
-
Robbert Krebbers authored
-
- 07 May, 2013 1 commit
-
-
Robbert Krebbers authored
The refactoring includes: * Use infix notations for the various list relations * More consistent naming * Put lemmas on one line whenever possible * Change proofs into one-liners when possible * Make better use of the "Implicit Types" command * Improve the order of the list module by placing all definitions at the start, then the proofs, and finally the tactics. Besides, there is some new machinery for proofs by reflection on lists. It is used for a decision procedure for permutations and list containment.
-
- 22 Feb, 2013 1 commit
-
-
Robbert Krebbers authored
-
- 19 Feb, 2013 1 commit
-
-
Robbert Krebbers authored
Both the operational and axiomatic semantics are extended with sequence points and a permission system based on fractional permissions. In order to achieve this, the memory model has been completely revised, and is now built on top of an abstract interface for permissions. Apart from these changed, the library on lists and sets has been heavily extended, and minor changed have been made to other parts of the prelude.
-
- 01 Feb, 2013 1 commit
-
-
Robbert Krebbers authored
-
- 09 Jan, 2013 1 commit
-
-
Robbert Krebbers authored
The development now corresponds exactly to the FoSSaCS 2013 paper. Also, the prelude is updated to the one of the master branch.
-
- 05 Jan, 2013 1 commit
-
-
Robbert Krebbers authored
* Define the standard strict order on pre orders. * Prove that this strict order is well founded for finite sets and finite maps. We also provide some utilities to compute with well founded recursion. * Improve the "simplify_option_equality" tactic to handle more cases. * Axiomatize finiteness of finite maps by translation to lists, instead of by them having a finite domain. * Prove many additional properties of finite maps. * Add many functions and theorems on lists, including: permutations, resize, filter, ...
-
- 12 Nov, 2012 1 commit
-
-
Robbert Krebbers authored
Most interestingly: * Use [lia] instead of [omega] everywhere * More many generic lemmas on the memory to the theory on finite maps. * Many additional list lemmas. * A new interface for a monad for collections, which is now also used by the collection tactics. * Provide an additional finite collection implementation using unordered lists without duplicates removed. This implementation forms a monad (just the list monad in disguise).
-
- 19 Oct, 2012 1 commit
-
-
Robbert Krebbers authored
The following things have been changed in this revision: * We now give a small step semantics for expressions. The denotational semantics only works for side-effect free expressions. * Dynamically allocated memory through alloc and free is now supported. * The following expressions are added: assignment, function call, unary operators, conditional, alloc, and free. * Some customary induction schemes for expressions are proven. * The axiomatic semantics (and its interpretation) have been changed in order to deal with non-deterministic expressions. * We have added inversion schemes based on small inversions for the operational semantics. Inversions using these schemes are much faster. * We improved the statement preservation proof of the operational semantics. * We now use a variant of SsReflect's [by] and [done], instead of Coq's [now] and [easy]. The [done] tactic is much faster as it does not perform inversions. * Add theory, definitions and notations on vectors. * Separate theory on contexts. * Change [Arguments] declarations to ensure better unfolding.
-
- 29 Aug, 2012 1 commit
-
-
Robbert Krebbers authored
improve some definitions, simplify some proofs.
-