 17 Feb, 2016 2 commits


Robbert Krebbers authored
simplify_equality => simplify_eq simplify_equality' => simplify_eq/= simplify_map_equality => simplify_map_eq simplify_map_equality' => simplify_map_eq/= simplify_option_equality => simplify_option_eq simplify_list_equality => simplify_list_eq f_equal' => f_equal/= The /= suffixes (meaning: do simpl) are inspired by ssreflect.

Robbert Krebbers authored

 16 Feb, 2016 1 commit


Ralf Jung authored

 15 Feb, 2016 2 commits


Robbert Krebbers authored

Ralf Jung authored

 13 Feb, 2016 1 commit


Robbert Krebbers authored
Also, make our redefinition of done more robust under different orders of Importing modules.

 16 Jan, 2016 2 commits


Robbert Krebbers authored

Robbert Krebbers authored
This one (previously solve_elem_of) was hardly used. The tactic that uses naive_solver (previously esolve_elem_of, now solve_elem_of) has been extended with flags to say which hypotheses should be cleared/kept.

 04 Jan, 2016 1 commit


Ralf Jung authored

 11 Dec, 2015 1 commit


Robbert Krebbers authored

 20 Nov, 2015 1 commit


Robbert Krebbers authored
* Remove the order from RAs, it is now defined in terms of the ⋅ operation. * Define ownership using the stepindexed order. * Remove the order also from DRAs and change STS accordingly. While doing that, I changed STS to no longer use decidable token sets, which removes the requirement of decidable equality on tokens.

 18 Nov, 2015 1 commit


Robbert Krebbers authored

 17 Nov, 2015 1 commit


Robbert Krebbers authored

 16 Nov, 2015 2 commits


Robbert Krebbers authored

Robbert Krebbers authored

 03 Feb, 2017 1 commit


Robbert Krebbers authored

 01 Feb, 2017 1 commit


Robbert Krebbers authored
The port makes the following notable changes: * The carrier types of separation algebras and integer environments are no longer in Set. Now they have a type at a fixed type level above Set. This both works better in 8.5 and makes the formalization more general. I have tried putting them at polymorphic type levels, but that increased the compilation time by an order of magnitude. * I am using a custom f_equal tactic written in Ltac to circumvent bug #4069. That bug has been fixed, so this custom tactic can be removed when the next beta of 8.5 is out.

 04 Jun, 2015 1 commit


Robbert Krebbers authored

 02 Jun, 2015 1 commit


Robbert Krebbers authored

 22 Apr, 2015 1 commit


Robbert Krebbers authored

 16 Apr, 2015 1 commit


Robbert Krebbers authored

 02 Mar, 2015 1 commit


Robbert Krebbers authored

 08 Feb, 2015 2 commits


Robbert Krebbers authored

Robbert Krebbers authored
Important changes in the core semantics: * Types extended with function types. Since function types are a special kind of pointer types, types now have an additional mutual part called "ptr_type". * Pointers extended with function pointers. Theses are just names that refer to an actual function in the function environment. * Typing environments extended to assign argument and return types to function names. Before we used a separate environment for these, but since the argument and return types are already needed to type function pointers, this environment would appear in pretty much every typing judgment. As a sideeffect, the frontend has been rewritten entirely. The important changes are: * Type checking of expressions is more involved: there is a special kind of expression type corresponding to a function designator. * To handle things like block scoped extern function, more statefullness was needed. To prepare for future extensions, the entire frontend now uses a state monad.

 27 Jan, 2015 1 commit


Robbert Krebbers authored
* This behavior is "implementation defined" and can be turned on and off using the Boolean field "alloc_can_fail" of the class "Env". * The expression "EAlloc" is now an rvalue of pointer type instead of an lvalue. * The executable semantics for expressions is now nondeterministic. Hence, some proofs had to be revised.

 15 Nov, 2014 1 commit


Robbert Krebbers authored
Integers with the same size, are no longer supposed to have the same rank. As a result, the C integer types (char, short, int, long, long long) are different (and thus cannot alias) even if they have the same size. We now have to use a more involved definition of integer promotions and usual arithmetic conversions. However, this new definition follows the C standard literally.

 03 Sep, 2014 1 commit


Robbert Krebbers authored

 25 Aug, 2014 1 commit


Robbert Krebbers authored

 05 Jun, 2014 2 commits


Robbert Krebbers authored
Major changes: * A data structure to collect locked addresses in memory. * Operations to lock and unlock addresses. * Remove [ctree_Forall] and express it using [Forall] and [ctree_flatten]. This saves a lot of lines of code. * Add a [void] value. This value cannot be typed, but will be used as a dummy return value for functions with return type [void]. Minor changes: * Various deciders in preparation of the executable semantics. * Improve naming and notations. * Remove obsolete stuff.

Robbert Krebbers authored
Conflicts: collections.v

 02 May, 2014 2 commits


Robbert Krebbers authored

Robbert Krebbers authored

 17 Jun, 2013 1 commit


Robbert Krebbers authored

 07 May, 2013 1 commit


Robbert Krebbers authored
The refactoring includes: * Use infix notations for the various list relations * More consistent naming * Put lemmas on one line whenever possible * Change proofs into oneliners when possible * Make better use of the "Implicit Types" command * Improve the order of the list module by placing all definitions at the start, then the proofs, and finally the tactics. Besides, there is some new machinery for proofs by reflection on lists. It is used for a decision procedure for permutations and list containment.

 19 Feb, 2013 1 commit


Robbert Krebbers authored
Both the operational and axiomatic semantics are extended with sequence points and a permission system based on fractional permissions. In order to achieve this, the memory model has been completely revised, and is now built on top of an abstract interface for permissions. Apart from these changed, the library on lists and sets has been heavily extended, and minor changed have been made to other parts of the prelude.

 09 Jan, 2013 1 commit


Robbert Krebbers authored
The development now corresponds exactly to the FoSSaCS 2013 paper. Also, the prelude is updated to the one of the master branch.

 05 Jan, 2013 1 commit


Robbert Krebbers authored
* Define the standard strict order on pre orders. * Prove that this strict order is well founded for finite sets and finite maps. We also provide some utilities to compute with well founded recursion. * Improve the "simplify_option_equality" tactic to handle more cases. * Axiomatize finiteness of finite maps by translation to lists, instead of by them having a finite domain. * Prove many additional properties of finite maps. * Add many functions and theorems on lists, including: permutations, resize, filter, ...

 12 Nov, 2012 1 commit


Robbert Krebbers authored
Most interestingly: * Use [lia] instead of [omega] everywhere * More many generic lemmas on the memory to the theory on finite maps. * Many additional list lemmas. * A new interface for a monad for collections, which is now also used by the collection tactics. * Provide an additional finite collection implementation using unordered lists without duplicates removed. This implementation forms a monad (just the list monad in disguise).

 19 Oct, 2012 1 commit


Robbert Krebbers authored
The following things have been changed in this revision: * We now give a small step semantics for expressions. The denotational semantics only works for sideeffect free expressions. * Dynamically allocated memory through alloc and free is now supported. * The following expressions are added: assignment, function call, unary operators, conditional, alloc, and free. * Some customary induction schemes for expressions are proven. * The axiomatic semantics (and its interpretation) have been changed in order to deal with nondeterministic expressions. * We have added inversion schemes based on small inversions for the operational semantics. Inversions using these schemes are much faster. * We improved the statement preservation proof of the operational semantics. * We now use a variant of SsReflect's [by] and [done], instead of Coq's [now] and [easy]. The [done] tactic is much faster as it does not perform inversions. * Add theory, definitions and notations on vectors. * Separate theory on contexts. * Change [Arguments] declarations to ensure better unfolding.

 29 Aug, 2012 1 commit


Robbert Krebbers authored
improve some definitions, simplify some proofs.
