diff --git a/theories/sets.v b/theories/sets.v index 0402ebc74346de0ed3e4bc295ba9380adab62041..bb9c9ddd102c9267d4e632927f6a1bf63eb0aa69 100644 --- a/theories/sets.v +++ b/theories/sets.v @@ -20,7 +20,7 @@ Proof. by split; [split | |]; repeat intro. Qed. Lemma mkSet_elem_of {A} (f : A → Prop) x : (x ∈ mkSet f) = f x. Proof. done. Qed. -Lemma mkSet_not_elem_of {A} (f : A → Prop) x : (x ∉ mkSet f) = (~f x). +Lemma mkSet_not_elem_of {A} (f : A → Prop) x : (x ∉ mkSet f) = (¬f x). Proof. done. Qed. Instance set_ret : MRet set := λ A (x : A), {[ x ]}.