From fc251aa53ed105a2079dd88b9f23b7256a80e862 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Wed, 25 May 2022 14:19:28 +0200 Subject: [PATCH] Preimage function for finite maps. --- theories/fin_maps.v | 85 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 85 insertions(+) diff --git a/theories/fin_maps.v b/theories/fin_maps.v index e5c1e065..ccec3f53 100644 --- a/theories/fin_maps.v +++ b/theories/fin_maps.v @@ -168,6 +168,13 @@ Global Instance map_lookup_total `{!Lookup K A (M A), !Inhabited A} : LookupTotal K A (M A) | 20 := λ i m, default inhabitant (m !! i). Typeclasses Opaque map_lookup_total. +Definition map_preimage `{FinMapToList K A MKA, Empty MADK, + PartialAlter A DK MADK, Empty DK, Singleton K DK, Union DK} + (m : MKA) : MADK := + map_fold + (λ i x, partial_alter (λ mX, Some ({[ i ]} ∪ default ∅ mX)) x) ∅ m. +Typeclasses Opaque map_preimage. + (** * Theorems *) Section theorems. Context `{FinMap K M}. @@ -3264,6 +3271,84 @@ Section kmap. Proof. unfold strict. by rewrite !map_disjoint_subseteq. Qed. End kmap. +Section preimage. + Context `{FinMap K MK, FinMap A MA, FinSet K DK, !LeibnizEquiv DK}. + Local Notation map_preimage := + (map_preimage (K:=K) (A:=A) (MKA:=MK A) (MADK:=MA DK) (DK:=DK)). + Implicit Types m : MK A. + + Lemma map_preimage_empty : map_preimage ∅ = ∅. + Proof. apply map_fold_empty. Qed. + Lemma map_preimage_insert m i x : + m !! i = None → + map_preimage (<[i:=x]> m) = + partial_alter (λ mX, Some ({[ i ]} ∪ default ∅ mX)) x (map_preimage m). + Proof. + intros Hi. refine (map_fold_insert_L _ _ i x m _ Hi). + intros j1 j2 x1 x2 m' ? _ _. destruct (decide (x1 = x2)) as [->|?]. + - rewrite <-!partial_alter_compose. + apply partial_alter_ext; intros ? _; f_equal/=. set_solver. + - by apply partial_alter_commute. + Qed. + + Lemma lookup_preimage_Some_empty m x : + map_preimage m !! x ≠Some ∅. + Proof. + induction m as [|i x' m ? IH] using map_ind. + { by rewrite map_preimage_empty, lookup_empty. } + rewrite map_preimage_insert by done. destruct (decide (x = x')) as [->|]. + - rewrite lookup_partial_alter. intros [=]. set_solver. + - rewrite lookup_partial_alter_ne by done. set_solver. + Qed. + + Lemma lookup_preimage_None_1 m x i : + map_preimage m !! x = None → m !! i ≠Some x. + Proof. + induction m as [|i' x' m ? IH] using map_ind; [by rewrite lookup_empty|]. + rewrite map_preimage_insert by done. destruct (decide (x = x')) as [->|]. + - by rewrite lookup_partial_alter. + - rewrite lookup_partial_alter_ne, lookup_insert_Some by done. naive_solver. + Qed. + + Lemma lookup_preimage_Some_1 m X x i : + map_preimage m !! x = Some X → + i ∈ X ↔ m !! i = Some x. + Proof. + revert X. induction m as [|i' x' m ? IH] using map_ind; intros X. + { by rewrite map_preimage_empty, lookup_empty. } + rewrite map_preimage_insert by done. destruct (decide (x = x')) as [->|]. + - rewrite lookup_partial_alter. intros [= <-]. + rewrite elem_of_union, elem_of_singleton, lookup_insert_Some. + destruct (map_preimage m !! x') as [X'|] eqn:Hx'; simpl. + + rewrite IH by done. naive_solver. + + apply (lookup_preimage_None_1 _ _ i) in Hx'. set_solver. + - rewrite lookup_partial_alter_ne, lookup_insert_Some by done. naive_solver. + Qed. + + Lemma lookup_preimage_None m x : + map_preimage m !! x = None ↔ ∀ i, m !! i ≠Some x. + Proof. + split; [by eauto using lookup_preimage_None_1|]. + intros Hm. apply eq_None_not_Some; intros [X ?]. + destruct (set_choose_L X) as [i ?]. + { intros ->. by eapply lookup_preimage_Some_empty. } + by eapply (Hm i), lookup_preimage_Some_1. + Qed. + + Lemma lookup_preimage_Some m x X : + map_preimage m !! x = Some X ↔ X ≠∅ ∧ ∀ i, i ∈ X ↔ m !! i = Some x. + Proof. + split. + - intros HxX. split; [intros ->; by eapply lookup_preimage_Some_empty|]. + intros j. by apply lookup_preimage_Some_1. + - intros [HXne HX]. destruct (map_preimage m !! x) as [X'|] eqn:HX'. + + f_equal; apply set_eq; intros i. rewrite HX. + by apply lookup_preimage_Some_1. + + apply set_choose_L in HXne as [j ?]. + apply (lookup_preimage_None_1 _ _ j) in HX'. naive_solver. + Qed. +End preimage. + (** * Tactics *) (** The tactic [decompose_map_disjoint] simplifies occurrences of [disjoint] in the hypotheses that involve the empty map [∅], the union [(∪)] or insert -- GitLab