diff --git a/theories/gmultiset.v b/theories/gmultiset.v index a4960ac2250cd38f1c62be7291963736180160bc..730e3061f92ef27f2f53ee0e559811c5cc7301f1 100644 --- a/theories/gmultiset.v +++ b/theories/gmultiset.v @@ -397,14 +397,9 @@ Section more_lemmas. Lemma list_to_set_disj_app l1 l2 : list_to_set_disj (l1 ++ l2) =@{gmultiset A} list_to_set_disj l1 ⊎ list_to_set_disj l2. Proof. induction l1; multiset_solver. Qed. - Lemma elem_of_list_to_set_disj x l: + Lemma elem_of_list_to_set_disj x l : x ∈@{gmultiset A} list_to_set_disj l ↔ x ∈ l. - Proof. - induction l as [|?? IH]; [set_solver|split]. - - intros [->%gmultiset_elem_of_singleton| Hin]%gmultiset_elem_of_disj_union; - [set_solver|by right; apply IH]. - - intros [-> |]%elem_of_cons; rewrite ?list_to_set_disj_cons; multiset_solver. - Qed. + Proof. induction l; set_solver. Qed. Global Instance list_to_set_disj_perm : Proper ((≡ₚ) ==> (=)) (list_to_set_disj (C:=gmultiset A)). Proof. induction 1; multiset_solver. Qed.