diff --git a/theories/fin_sets.v b/theories/fin_sets.v index 2cb8a475ccd23bfc5ee1104ec194b785a7586a9c..b932ce74f5cf6cf45ce1e810b3c049ecc6ec7037 100644 --- a/theories/fin_sets.v +++ b/theories/fin_sets.v @@ -343,6 +343,10 @@ Section map. x ∈ X → y = f x → y ∈ set_map (D:=D) f X. Proof. set_solver. Qed. + Lemma set_map_empty (f : A → B) : + set_map (C:=C) (D:=D) f ∅ = ∅. + Proof. unfold set_map. rewrite elements_empty. done. Qed. + Lemma set_map_union (f : A → B) (X Y : C) : set_map (D:=D) f (X ∪ Y) ≡ set_map (D:=D) f X ∪ set_map (D:=D) f Y. Proof. set_solver. Qed.