diff --git a/theories/coPset.v b/theories/coPset.v index 6d092f0d486b0fb1c24c27d58a08487406438be3..92fb29741eefd54f9c374de709f19db8cb15e9bb 100644 --- a/theories/coPset.v +++ b/theories/coPset.v @@ -159,8 +159,6 @@ Instance coPset_singleton : Singleton positive coPset := λ p, Instance coPset_elem_of : ElemOf positive coPset := λ p X, e_of p (`X). Instance coPset_empty : Empty coPset := coPLeaf false ↾ I. Instance coPset_top : Top coPset := coPLeaf true ↾ I. -(** Iris and specifically [solve_ndisj] heavily rely on this hint. *) -Hint Resolve (top_subseteq (A:=positive) (C:=coPset)) : core. Instance coPset_union : Union coPset := λ X Y, let (t1,Ht1) := X in let (t2,Ht2) := Y in (t1 ∪ t2) ↾ coPset_union_wf _ _ Ht1 Ht2. @@ -186,6 +184,9 @@ Proof. - done. Qed. +(** Iris and specifically [solve_ndisj] heavily rely on this hint. *) +Hint Resolve (top_subseteq (A:=positive) (C:=coPset)) : core. + Instance coPset_leibniz : LeibnizEquiv coPset. Proof. intros X Y; rewrite elem_of_equiv; intros HXY.