diff --git a/theories/decidable.v b/theories/decidable.v index 22bb51f4f810fea50ea4b9d28d4a36255d734f9d..f149b0b27388a0618c78a4f6a8eb3349fdc04648 100644 --- a/theories/decidable.v +++ b/theories/decidable.v @@ -192,12 +192,8 @@ Proof. case_bool_decide; intuition discriminate. Qed. Lemma bool_decide_iff (P Q : Prop) `{Decision P, Decision Q} : (P ↔ Q) → bool_decide P = bool_decide Q. Proof. repeat case_bool_decide; tauto. Qed. -Lemma bool_decide_negb (P : Prop) `{Decision P} : negb (bool_decide P) = bool_decide (not P). -Proof. - case_bool_decide. - - simpl. symmetry. apply bool_decide_eq_false. auto. - - simpl. symmetry. apply bool_decide_eq_true. auto. -Qed. +Lemma bool_decide_negb P `{Decision P} : negb (bool_decide P) = bool_decide (not P). +Proof. repeat case_bool_decide; intuition. Qed. Lemma bool_decide_eq_true_1 P `{!Decision P}: bool_decide P = true → P. Proof. apply bool_decide_eq_true. Qed.