diff --git a/theories/option.v b/theories/option.v index e4e0271670a6a8b4140a702dc9a8c8216a91e4ce..9d887e247333b06db3180f016d49434259c5e2fa 100644 --- a/theories/option.v +++ b/theories/option.v @@ -110,6 +110,7 @@ Instance option_equiv `{Equiv A} : Equiv (option A) := option_Forall2 (≡). Section setoids. Context `{Equiv A} `{!Equivalence ((≡) : relation A)}. + Implicit Types mx my : option A. Lemma equiv_option_Forall2 mx my : mx ≡ my ↔ option_Forall2 (≡) mx my. Proof. done. Qed. @@ -121,14 +122,18 @@ Section setoids. Global Instance option_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (option A). Proof. intros x y; destruct 1; fold_leibniz; congruence. Qed. - Lemma equiv_None (mx : option A) : mx ≡ None ↔ mx = None. + Lemma equiv_None mx : mx ≡ None ↔ mx = None. Proof. split; [by inversion_clear 1|by intros ->]. Qed. - Lemma equiv_Some_inv_l (mx my : option A) x : + Lemma equiv_Some_inv_l mx my x : mx ≡ my → mx = Some x → ∃ y, my = Some y ∧ x ≡ y. Proof. destruct 1; naive_solver. Qed. - Lemma equiv_Some_inv_r (mx my : option A) y : - mx ≡ my → mx = Some y → ∃ x, mx = Some x ∧ x ≡ y. + Lemma equiv_Some_inv_r mx my y : + mx ≡ my → my = Some y → ∃ x, mx = Some x ∧ x ≡ y. Proof. destruct 1; naive_solver. Qed. + Lemma equiv_Some_inv_l' my x : Some x ≡ my → ∃ x', Some x' = my ∧ x ≡ x'. + Proof. intros ?%(equiv_Some_inv_l _ _ x); naive_solver. Qed. + Lemma equiv_Some_inv_r' mx y : mx ≡ Some y → ∃ y', mx = Some y' ∧ y ≡ y'. + Proof. intros ?%(equiv_Some_inv_r _ _ y); naive_solver. Qed. Global Instance is_Some_proper : Proper ((≡) ==> iff) (@is_Some A). Proof. inversion_clear 1; split; eauto. Qed.