diff --git a/theories/gmap.v b/theories/gmap.v index 97726848b7b816d38e1ffb547545094017bf71b6..9b49181e25bfa288ea31a9e22d947d7e0939e256 100644 --- a/theories/gmap.v +++ b/theories/gmap.v @@ -251,7 +251,11 @@ Section gset. Global Instance gset_elem_of_dec : RelDecision (∈@{gset K}) | 1 := _. Global Instance gset_disjoint_dec : RelDecision (##@{gset K}) := _. Global Instance gset_subseteq_dec : RelDecision (⊆@{gset K}) := _. - Global Instance gset_dom {A} : Dom (gmap K A) (gset K) := mapset_dom. + + (** We put in an eta expansion to avoid [injection] from unfolding equalities + like [dom (gset _) m1 = dom (gset _) m2]. *) + Global Instance gset_dom {A} : Dom (gmap K A) (gset K) := λ m, + let '(GMap m Hm) := m in mapset_dom (GMap m Hm). Global Arguments gset_elem_of : simpl never. Global Arguments gset_empty : simpl never. @@ -273,7 +277,11 @@ Section gset. Global Instance gset_semi_set : SemiSet K (gset K) | 1 := _. Global Instance gset_set : Set_ K (gset K) | 1 := _. Global Instance gset_fin_set : FinSet K (gset K) := _. - Global Instance gset_dom_spec : FinMapDom K (gmap K) (gset K) := mapset_dom_spec. + Global Instance gset_dom_spec : FinMapDom K (gmap K) (gset K). + Proof. + pose proof (mapset_dom_spec (M:=gmap K)) as [?? Hdom]; split; auto. + intros A m. specialize (Hdom A m). by destruct m. + Qed. (** If you are looking for a lemma showing that [gset] is extensional, see [sets.set_eq]. *)