Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
stdpp
Commits
d21800ed
Commit
d21800ed
authored
May 04, 2014
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Commutativity of altering bytes in memory trees.
parent
83f05bf1
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
15 deletions
+11
-15
theories/list.v
theories/list.v
+11
-15
No files found.
theories/list.v
View file @
d21800ed
...
...
@@ -1054,7 +1054,6 @@ Proof.
end; rewrite <-?take_drop_commute, ?drop_drop, ?take_take, ?Min.min_l by lia;
auto with lia.
Qed.
Lemma sublist_alter_length f i n l :
(∀ k, sublist_lookup i n l = Some k → length (f k) = n) →
i + n ≤ length l → length (sublist_alter f i n l) = length l.
...
...
@@ -1107,22 +1106,19 @@ Lemma mask_app f βs1 βs2 l :
mask f (βs1 ++ βs2) l
= mask f βs1 (take (length βs1) l) ++ mask f βs2 (drop (length βs1) l).
Proof. revert l. induction βs1;intros [|??]; f_equal'; auto using mask_nil. Qed.
Lemma
mask_take
f βs l n : mask f βs (take n
l) =
take n
(mask f βs
l).
Lemma
take_mask
f βs l n :
take n (
mask f βs
l) = mask f
(take n
βs) (
take n l).
Proof. revert n βs. induction l; intros [|?] [|[] ?]; f_equal'; auto. Qed.
(*
Lemma lookup_mask_None x y βs l i :
βs !! i = None → mask x y βs l !! i = None.
Proof. revert i l. induction βs; intros [] [] ?; simplify_equality'; auto. Qed.
Lemma lookup_mask_true x y βs l i :
βs !! i = Some true → mask x y βs l !! i = Some y.
Proof. revert i l. induction βs; intros [] [] ?; simplify_equality'; auto. Qed.
Lemma lookup_mask x y βs l i :
βs !! i = Some false → i < length l → mask x y βs l !! i = l !! i.
Proof.
revert i βs. induction l; intros [|?] [|??] ??;
simplify_equality'; auto with lia.
Lemma drop_mask f βs l n : drop n (mask f βs l) = mask f (drop n βs) (drop n l).
Proof.
revert n βs. induction l; intros [|?] [|[] ?]; f_equal'; auto using mask_nil.
Qed.
Lemma sublist_lookup_mask f βs l i n :
sublist_lookup i n (mask f βs l)
= mask f (take n (drop i βs)) <$> sublist_lookup i n l.
Proof.
unfold sublist_lookup; rewrite mask_length; simplify_option_equality; auto.
by rewrite drop_mask, take_mask.
Qed.
*)
(** ** Properties of the [seq] function *)
Lemma fmap_seq j n : S <$> seq j n = seq (S j) n.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment